Role of Hydropower in a Low Carbon Future ESIG 2021 Spring Technical Workshop Session 7: Energy Storage Developments

Pierre-Olivier Pineau HEC Montréal, Canada March 23, 2021 – 3-4.30 pm

Storyline

- **1. Storage is key for RE integration** but often discussed independently from transmission and hydropower reservoirs
- **2.** Dams and their reservoirs store water: potential energy is stored. Usually not considered a storage system... although it stores energy!
- **3. Energy storage in dams represent huge storage options** that can be used to some extent to integrate RE
- **4. Northeast case study**: RE integration & Hydro-Quebec's 176 TWh of storage (equivalent to about 2 billions EVs; there's 276 million cars in the US)

Global Operational + Announced Energy Storage, Rated Capacity and Energy (2020)

	Operational (MW)	Announced (MW)		Operational (GWh)	Announced (GWh)	
Electro-chemical	1 781,9	524	1,2%	3,8	1,5	0,3%
Electro-mechanical (flywheel, comp. air)	1 655,1	521	1,2%	33,8	4,0	2,1%
Hydrogen Storage	17,3	0	0,0%	0,1	0,0	0,0%
Lead-Carbon	0,4	0	0,0%	0,0	0,0	0,0%
Liquid Air Energy Storage	0,0	0	0,0%	0,0	0,0	0,0%
Lithium Ion Battery	3,4	751	0,4%	0,0	0,0	0,0%
Pumped Hydro Storage	167 790,0	11 455	95,8%	1 556,9	157,6	96,6%
Thermal Storage	2 443,9	111	1,4%	15,8	0,5	0,9%
Total	173 692,8	13 363		1 610,5	163,7	

Electric Storage Resources - Definition

"a resource capable of **receiving electric energy** from the grid and storing it for later **injection of electricity back to the grid** regardless of where the resource is located on the electrical system."

FERC Order 841 *Electric Storage Participation in Markets Operated by RTOs and ISOs* (2018)

Global Dam Capacity, 2017 (km³ of water)

FAO Aquastat (2021)

Estimated Energy Storage Capacity in Canadian Powered Dams by Province, in GWh

Séguin (2017)

Chair in Energy Sector

Northeast: Population and installed capacity, 2017 (GW)

Energy Storage, 2020

US DoE (2020) and GRanD (2017)

Chair in Energy Sector Management **HEC MONTRĒAL**

Energy Storage, 2020

US DoE (2020) and GRanD (2017)

Decarbonization Cost in the Northeast No Trade / No New Transmission / Optimal Transmission

Rodríguez-Sarasty, Debia, Pineau (2021)

More Regional Integration = More Wind

With Optimal Transmission :

- Hydro-Wind correlation:
- Wind generation:
- Wind curtailment:

from -0,06 to **-0,28** from 102 to **120 TWh** frmo 1,5 % to **0,1 %**

Hydro Dams + Transmission = HEC MONTREAL 100% decarbonization and more PV & Wind

[]	New MW	QC	ON	AT	NY	NE	Total	
No Additional Transmission with Quebec	Solar PV	0	5 607	4 625	14 247	6 635	31 114	Yearly cost: \$19.8G
	Wind	0	5 000	13 834	8 911	15 877	43 622	
	New hydro	0			456		456	
	Storage	0	1 101	160	915		2 177	
		0	11 708	18 619	24 529	22 512	77 368	

Γ	New MW	QC	ON	AT	NY	NE	Total	
Optimal	Solar PV	0	1 416	3 461	21 021	7 556	33 454	
Transmission	Wind	0	5 000	13 834	8 014	17 728	44 576	\$17.1G
with Quebec (+ 16 GW)	New hydro	0			456		456	
	Storage	0					0	
		0	6 416	17 295	29 491	25 284	78 486	

In these scenarios, Quebec cannot invest in new wind & solar PV.

Chair in Energy Sector

Challenges to overcome

- Joint/regional plannig
- Shared market rules
- Cooperation:
 - Shared capacity constraints
 - Energy imbalance market
 - Transmission investments

Hydropower in the US (79.6 GW + 21.6 GW PSH)

US DoE (2016)

One-hour ramps for hydropower and natural gas by balancing authority in 2019

Thank You

energie.hec.ca

Partners of the Chair in Energy Sector Management:

