StEnSea: Stored Energy in the Sea

Bernhard Ernst

2022 Fall Technical Workshop, Minneapolis, Oct. 26th, 2022

Scenario: 100% Renewable electricity in 2050

Source: IEE-calculation for UBA Energy goal 100% electricity from RE © Fraunhofer IEE

Balancing Needs | Example Scenario Germany 2050

→ Different Requirements for Storage!

Ref.: Data from BMU Leitstudie 2011 © Fraunhofer IEE

Capacities and discharge times of different storage technologies

Pumped Hydro Storage (PHS)

Operating principle:

potential energy

Application:

- Short to medium term storage (h-d)
- Peak load, Grid Services

Properties:

- Low energy costs
- Geographical dependency
- High capacity and efficiency (up to 88%)
- High construction costs and long construction time

Status & Trend:

• R&D: Use of "natural" height differences

Source picture bottom right: bmwi-energiewende.de; Source picture top right: http://www.energystorageexchange.org/ and Google Maps

Fraunhofer

Pumped Hydro (PHS): Global Trend

Sources: IRENA (Black and green curve), IEA (Blue curve)

Pumped Hydro (PHS): Global Trend

Sources: IRENA (Black and green curve), IEA (Blue curve)

Pumped Hydro (PHS): Global Trend

Fraunhofer

Sources: IRENA, IEA

The functional principle corresponds to that of a pumped storage power plant

- Water flows into the sphere and drives the turbine
- The turbine produces electricity until the sphere is filled
- Once the sphere is filled with water, it is filled and

Technical Data STENSEA Concept

Material:	Concrete
Turbine power:	5 MW
Discharge time:	4 h
Capacity:	20 MWh
Efficiency:	75-80 %
Diameter:	30 m (100ft.
Wall thickness:	2,70 m
Storage volume:	12.000 m³
Pressure:	70 bar/700m
Weight:	> buoyancy!

Source: Pictures on top and bottom left Hochtief © Fraunhofer IEE

StEnSea plant: 50 – 500 spheres

 \rightarrow Concrete sphere corresponds to the lower reservoir of a PHS.

Fig.: Hochtief © Fraunhofer IEE

GIS-based resource assessment (600-800m water depth)

	Potential [TWh]
World wide	~817
Тор 10	~628
Top 10 EU	~166
USA	~75
Japan	~70

Specific Investment Costs of Storage Technologies Meta study Energy Storage

Source: UMSICHT, IWES; Metastudie Energiespeicher for BMWi

Costs of Storage Technologies

Comparison StEnSea with battery

Assumptions:

Whole system incl. grid connection, system size: 30 MW, 120 MWh, 520 cycles per year (2 cycles per day, Mon-Fri)

<u>StEnSea</u>

Investment costs (power):	1354 €/kW
Investment costs (energy):	158 €/kWh
Lifetime:	20 years
Efficiency:	75-80 %
Storage costs:	4.6 €ct/kWh

<u>Li-lon Battery</u>	
Investment costs (power):	175 €/kW
Investment costs (energy):	550 €/kWh
Lifetime:	15 years
	-

Efficiency:	87.5 %
Storage costs:	7.3 €ct/kWh

The Hambach open-pit mining lake is a very promising application due to its structure

The Hambach open-pit mining lake

- Surface of 40,000m²
- Deepest point 355m below water level
- Distances to shore is 3km in each direction
- 688 StEnSea spheres
- 8.2 GWh discharge capacity
- 2.1 GW power output
- Barely profitable on <u>2019</u> market data
- Earliest completion of the lake 2070

Development phases of the StEnSea project

- Involved partys: Fraunhofer IEE, Hochtief, Uni-Stuttgart
- Idea: Prof. Horst Schmidt-Böcking, Prof. Gerhard Luther
- 1st BMWi-funded project ran untill 06/2017 (Phases A und B)
- 2nd BMWi-funded started in 07/2022 with pre-research phase and an anti-phase an

Gefördert durch:

Bundesministerium für Wirtschaft und Energie

aufgrund eines Beschlusses des Deutschen Bundestages

Model Experiment at Lake Constance (1:10)

- Technology testing
- Testing time 11/2016-12/2016 (around 4 Weeks)
- 100m water depth
- Site identification with maps from project "Tiefenschärfe"
- TRL2 → TRL 5/6

Goal: Gain experience for fullscale pilot

Source Street map on top: Google Maps, Source height profiles (top, bottom) project Tiefenschärfe ISF

Transport to test field

Model experiment at Lake Constance

Development phases of the StEnSea project

- Involved partys: Fraunhofer IEE, Hochtief, Uni-Stuttgart
- Idea: Prof. Horst Schmidt-Böcking, Prof. Gerhard Luther
- 1st BMWi-funded project runs till 06/2017 (Phase A und B)
- 2nd BMWi-funded started in 07/2022 with pre-research phase and and a started in 07/2022 with pre-research phase

aufgrund eines Beschlusses des Deutschen Bundestages

Gefördert durch:

Bundesministerium für Wirtschaft und Energie

Phase C: Pilot project (1:3) in deep water

The pilot project

- Diameter: 10 m
- Weight: ≈1000 metric tons
- Power: ≈1 MW
- Capacity: ≈1 MWh
- Depth: 600m-700m
- Pre-reseach ongoing (location, international economic studies)
- Manufacturing and installation planed for 2024

Project partner: PLEUGER Industries GmbH Seite 21

Sponsors, awards, contact

Conclusions

- Cost in the range of classical PHS
- Efficiency little less than PHS
- Modular approach
- Fast installation
- Low environmental impact
- Easy permitting
- Huge world wide potential
- Diversity in terms of resources

Offshore Energy and Storage Society

OSES 2023 MALTA

7th Offshore Energy and Storage Symposium JULY 12-14, 2023

https://www.osessociety.com/oses2023

The symposium is being hosted by the University of Malta, in collaboration with

- the Offshore Energy and Storage Society,
- the University of Nottingham,
- the University of Windsor and
- Fraunhofer IEE

