GRID SIGHT

Model-free Dynamic Hosting Capacity & Operating Envelopes

Brad Smith Lead Power Engineer

Agenda Model Free Dynamic Operating Envelopes

- 1. Gridsight Overview
- 2. Australian DER Landscape
- 3. Solution Overview
- 4. Traditional Modelling Approach
- 5. Model Free
- 6. DOE Simulations
- 7. Real-Time Calculations
- 8. Future Work

Gridsight Overview

Network Analytics and Hosting Capacity Management

Dynamic Operating Envelopes

Voltage Performance (incl. CVR design)

€∽ €

Transformer Loading & Connections

Phase Identification

₩

DER Detection & Compliance

Identify Broken Neutrals

Customer to Transformer Mapping

壨

DER Connections

Gridsight Overview

Network Analytics and Hosting Capacity Management

Rooftop Solar PV - Challenges

- ~20 GW installed capacity
- 1/3 Aus homes have solar
 0 1/2 homes in SA in QLD
- Entire state of SA recently powered entirely by solar, exporting back to NEM
- Excess solar causing constraints
 - O Voltage
 - O Thermal
 - O System

Rooftop Solar PV - Existing Solution: Static Export Limits

Rooftop Solar PV - Existing Solution: Static Export Limits

Rooftop Solar PV - Future Solution: Dynamic Operating Envelopes (DOE)

Rooftop Solar PV - Future Solution: Dynamic Operating Envelopes (DOE)

Solution Overview

Model Free Optimal Powerflow

Solution Overview

Traditional Modelling Approach

How is DER hosting capacity for distribution networks traditionally calculated?

$\frac{\partial \Delta(I_i^r)^p(\vec{x})}{\partial V_i^p } = -(G_{ii}^{pp}\cos\delta_i^p - B_{ii}^{pp}\sin\delta_i^p) - \frac{(P_i^{sp})^p\cos\delta_i^p + (Q_i^{sp})^p\sin\delta_i^p}{ V_i^p ^2}$
$\frac{\partial \Delta(I_i^r)^p(\vec{x})}{\partial \delta_i^p} = V_i^p (G_{ii}^{pp} \sin \delta_i^p + B_{ii}^{pp} \cos \delta_i^p) - \frac{(P_i^{rp})^p \sin \delta_i^p - (Q_i^{rp})^p \cos \delta_i^p}{ V_i^p }$
$\frac{\partial \Delta(I_i^{m,p}(\vec{x}))}{\partial V_i^p } = -(G_{ii}^{pp}\sin\delta_i^p + B_{ii}^{pp}\cos\delta_i^p) - \frac{(P_i^{ep})^p\sin\delta_i^p - (Q_i^{ep})^p\cos\delta_i^p}{ V_i^p ^2}$
$\frac{\partial \Delta(I_i^m)^p(\vec{x})}{\partial \delta_i^p} = - V_i^p (G_{ii}^{pp}\cos\delta_i^p - B_{ii}^{pp}\sin\delta_i^p) + \frac{(P_i^{pp})^p\cos\delta_i^p + (Q_i^{pp})^p\sin\delta_i^p}{ V_i^p }$

- 1. Network model (topology)
- 2. Impedance of all cables/conductors
- 3. Length of all line segments
- 4. Impedance of the transformer
- 5. The phase of each network connection
- 6. Load/generation for all connections

7. Setup time consuming non-linear power flow equations

8. Solve to estimate volts/current and determine network constraint excursions

Model Free What is Model free?

It's possible to use machine learning to capture the complex relationship between volts, active and reactive power

1. Utilise historical smart meter data

2. Train machine learning model to predict V given inputs P & Q

3. Test/validate model to confirm accuracy

4. Deploy model to estimate volts and determine network constraint excursions

5. Use cases

- New DER connections
- Network hosting capacity
- Scenario planning
- Dynamic operating envelopes

Model Free

Combine validated topology, DER characterisation and meter data to create per timestamp load estimates

Model Free

Distributed Training at Scale

Gridsight have built a production pipeline to allow distributed training/testing of thousands of model free networks. These are then deployed within the Gridsight software platform for hosting capacity applications

Distributed Model Training

Offline DOE Analytics

Α

DSOs	2
Model free networks	339
Models trained	4516
Voltage prediction RMSE	1.01V
Max voltage error	6.24 V (avg)
v. smart meter customers	~40%

AMI Measurement

Model Free Prediction

Algorithm Layer

Scale	~2800 solar sites				
Objective	Maximise exports				
Constraints	Voltage	V _{max} <= 253			
	Thermal	P _{tot} (_{kVA}) <= TX kVA rating			
	Customer	Per-phase min DOE limit (3ĸw) Per-phase max DOE limit (10ĸw)			
Allocation Method	Optimal	Individual DOE assigned to each customer			
	Equitable	Each customer assigned same % limit based on upper DOE bound			

Data / Interface Layer - Identified Constraints

Voltage / constraints

Data / Interface Layer - Simulated DOE Data

DOE TX Export Power Timeseries

 $\otimes \times$

Curtailment

Data / Interface Layer - Simulated DOE Data

Data / Interface Layer - Easy to Interpret Analytics

> DOE Performance					Show All Time	DAY VIEW ~ 25 Aug 2023 4
Distribution Transformers Customers						
DOE Aggregations (All Time) Aggregations of DOE Limits by distribution transfo	rmer. Click on column headings to sort by	a different value.			DSTX	x Q ±
Filter (displaying 2 systems) Allocation Method						
DISTRIBUTION TRANSFORMER	PV INSTALLED CAPACITY	NET MINIMUM ALLOCATED DOE	NET MAXIMUM ALLOCATED DOE	PERCENTAGE TIME UPPER LIMIT UNAVAILABLE	TOTAL ENERGY CURTAILED	TOTAL ENERGY RELEASED
DSTX ALLOCATION METHOD EQUITA	82.5 kW	0 kw/160 kw	160 kw/160 kw	11.5%	1539 kWh	896 kWh
DSTX ALLOCATION METHOD INDIVID	82.5 kW	0 kw/160 kw	160 kw/160 kw	2.0%	498 kWh	1937 kWh
					<< < > >> Page 1 of 1 G	to to page: 1 Show 10 🗸

Data / Interface Layer - Allocation Comparison

Real-Time Calculations

Current Architectures

Future Work

- Focus on import limits
 - O Residential/commercial EV charging DOE
- Scaling near real-time optimisation in Aus
 - O Most new solar customers will be DOE enabled
- Exploration of dynamic hosting capacity opportunities in the US, including MV thermal constraint considerations, and peak load shifting
- Inclusion of minimum demand constraints

GRID SIGHT

Brad Smith

Lead Power Engineer +61 488 408 604 brad@gridsight.ai