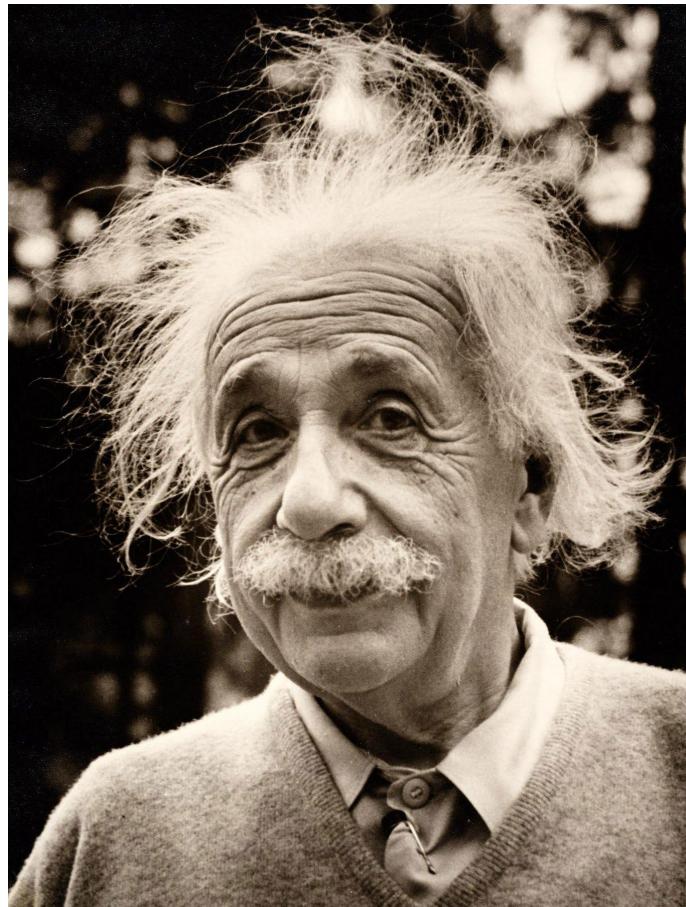


Technology Agnostic Participation Options in Electricity Markets



ENERGY SYSTEMS
INTEGRATION GROUP

Erik Ela

ESIG Markets and Meteorology
Workshop

June 26, 2025

***“Everything Should Be
Made as Simple as
Possible, But Not Simpler”***

***“Simple as possible for
electricity market design
starts at mostly, pretty,
complex” -EE***

Meat and Potatoes

The Simple-Meter

Quantum
Mechanics

The Brain

Electric System

Fourth grade curriculum

The answer to “do you like
ice cream”?

Participation Model Rule-of-Thumb

If is needed for reliability	• Build it
If it improves economic efficiency	• Allow it (if priorities permit)
If it does neither	• Shelf it
If it creates inequity	• Figure out a resolution, or shelf it
If it is too complex or won't solve	• Defer it, research it
If the technology is coming soon	• Build it now

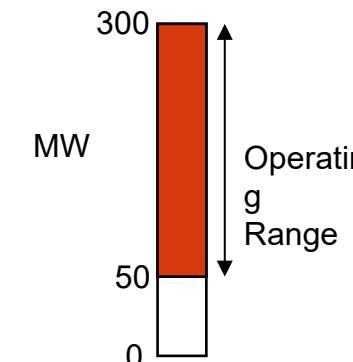
Extra, depending on
discussion

ENERGY SYSTEMS
INTEGRATION GROUP

Conventional Generator Participation Model

Participation Model Characteristics

Mathematical Modeling in Market Software

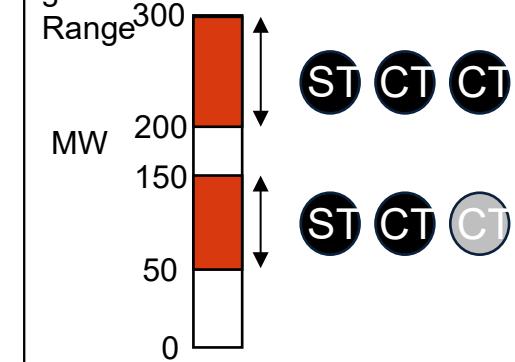

Bidding Parameters

Service Eligibility

Other participation rules

Conventional Generator

Natural Gas Coal Nuclear


- Min and Max operating range
- Ramp rates
- Startup time, startup cost, minimum up time, minimum down time
- Need commitment variables
- Fuel-based operation
- Generally eligible to participate in all ISO services

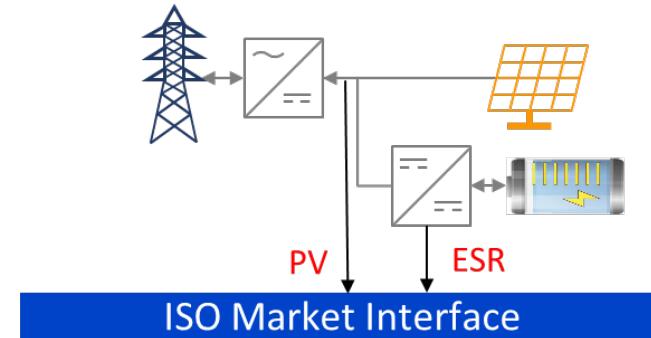
Multi-Stage Resource

Combined Cycle

Operating Range

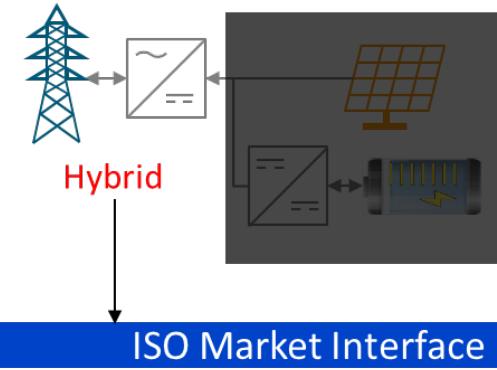
- In addition to bidding parameters of Conventional Generator, it may need transition costs, transition times, operating parameters in different configurations, etc.

Emerging Technology Participation Models

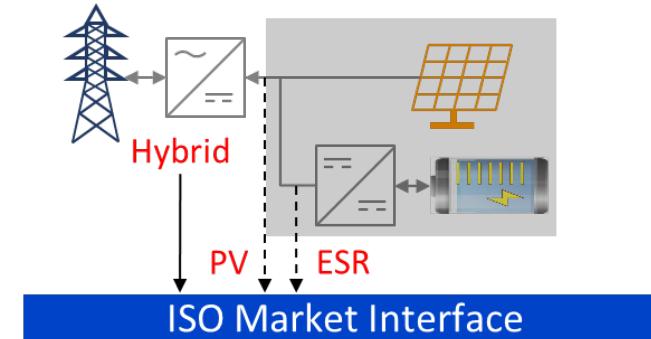

Variable Energy	Electric Storage	Demand Response	DER
Renewables A green square icon containing a white wind turbine symbol, representing renewable energy sources. <ul style="list-style-type: none">• Weather-based operation• Maximum available output variable with time• Needs forecasting: Day-ahead and real-time• Non-dispatchable or dispatchable up to their available output• Commitment-related bidding parameters unnecessary• Currently not eligible for reserves in most ISOs	Battery Storage A grey square icon containing a white battery symbol with a minus sign on the left and a plus sign on the right, representing electric storage.	Demand Response A blue square icon containing a white icon of a fan and a smartphone, representing demand response.	Distributed Energy Resources A grey square icon containing a white icon of a fan, a solar panel, and a battery, representing distributed energy resources.

Note: In U.S. markets, traditional reservoir hydropower typically offer energy in a similar way to thermal resources but with daily energy limits. In IESO, there are certain parameters to reflect connected hydro facilities

Hybrid Participation Models


Option A: 2R Independent Co-located Model

Separately represent each resource, with minimal changes to existing market designs


Option B: 1R Self-Managed Hybrid Model

Single offers and operating parameters allows participant bidding strategy flexibility


Option C: 1R ISO-Managed-Feasibility Hybrid Model

Add telemetry requirements to allow ISO to limit infeasible schedules during critical times

Option D: 2R Linked Co-located Model

Add linking constraint to increase ISO's and asset's ability to operate and represent the resource's dependencies

*figure illustrates dc-coupled strategy for demonstration purposes

Ancillary Service Compensation

- Some reliability attributes are not currently incentivized
- Sometimes auctions and market-based pricing for certain services may be impractical
- Prioritization of market design and software changes also key
 - It cost money to develop, discuss, test, implement, and administer new designs

Reasons why a market product may not be implemented	Example
Too complex to design (e.g., software complexity)	Volt/VAR support
Too specific to certain local areas (little to no competition)	Volt/VAR support
System inherently has more than sufficient amounts of the service	Synchronous Inertia
Costs for the service may be small, so cost of administering market product may outweigh benefits	Black start (restoration) service
A specific resource requirement rather than a system-wide need	Low Voltage Ride Through

The examples are used for illustrative purposes only and the reason may not be necessarily true for each example in each region.

Markets are not needed for every service!

ENERGY SYSTEMS
INTEGRATION GROUP

THANK
YOU