Integrating Bottom-up Load Forecasts Into Planning Tools

Energy Systems Integration Group (ESIG)

Session 8

June 15, 2023

Ryan Jones

EVOLVED ENERGY RESEARCH

Agenda

- Temporal resolution
- Sectoral coupling in electricity modeling
- Incorporating distribution systems

Example process for integrating forecasts into analytical tools

EnergyPATHWAYS (EP) is our demand-side stockrollover accounting model that produces scenarios based on exogenous service-demand and sale shares

Hourly Load Shape

RIO is a supply-side macro-energy model that finds the lowest cost investment and operations plan with best-in-class temporal and spatial granularity

2021 Energy System

Temporal resolution in capacity expansion modeling

- Capacity expansion models use many different time domains depending on problem focus
 - **Duration curves** inadequate for high renewables systems because chronology is lost
 - Day/period sampling our experience has been that solutions don't stabilize until ~750 well picked time slices per year are utilized
 - 8760s Helpful for certain applications, but too much focus within one year can limit ability to look across years

Problematic approaches to resources adequacy

Approach	Approach disadvantage	Solution
Add additional thermal capacity in post-process step	LOLP modeling with multiple weather years is a necessary parallel step; however, ignoring reserve margins altogether in capacity expansion can lead to suboptimal outcomes and difficulty representing certain policies, such no-new-thermal.	Use LOLP modeling to verify capacity expansion solutions and work to improve capacity expansion models
Identify super-peak time slices and enforce planning reserve constraints	Renewables and load electrification will shift the most constrained hour to different times of the day and even different times of the year.	Enforce a planning reserve constraint in all modeled hours since any pre-identified period will be gamed by the model
Pre-calculated ELCC (effective load carrying capability) values for renewable resources using a loss-of-load probability model	Works well for near-term modeling, but when changes to load shapes impact when LOLP hours occur, pre-calculated surfaces often overestimate reliability contributions from renewables	Apply hourly derates to renewable production in the hourly reserve constraint based on statistical analysis of renewable profiles

Sectoral coupling

Three scenarios illustrating sector coupling

Varying levels of sector coupling

	Clean Electricity	High Electrification	Zero Carbon Economy	
Electricity CO ₂ target	100% clean by 2050			
Electricity demand	Reference (0.7% AAGR)	ion (1.8% AAGR)		
Economy CO ₂ target	٦	Net-zero Energy & Industrial CO2		
Non-electric fuel demand	1	60% reduction (high electrification)		
Hydrogen use in thermal power plants	Dis	Enabled		
Energy service demand	2019 Annual Energy Outlook			
Additional assumptions	Continental U.S., 12 region optimal capacity expansion for fuels & electricity, 2020-2050 timeframe w 10-year model timestep, 2011 weather year, 7% WACC, AEO fuel prices			

Electricity load

Electricity generation

Low-carbon electricity must be studied in an economywide context

- Hydrogen to industry, transport, and fuels synthesis adds significant electricity load
- Biomass use in hydrogen and fuels means less is available for electricity

Source: Annual Decarbonization Perspective 2022, Central Scenario

Sectoral coupling can improve reliability through renewable overbuild

Distribution systems in system planning models

Representing distribution systems in capacity expansion models

- Bulk transmission system is connected to 15 "feeder archetypes" that cluster PGE's ~700 feeders based on shared characteristics
- 5 'customer category' and 3 'feeder utilization' bins

EVOLVED ENERGY RESEARCH

Feeder bins from PGE study

Feeder Archetype #	Customer Category Bin	Feeder Utilization Bin	Feeder Count	Residential load (% total)	Commercial load (% total)	Industrial load (% total)	Present-day Feeder Utilization (% nominal weak link)
1	Residential-oriented	High	59	22%	7%	0%	64%
2	Residential-oriented	Medium	60	18%	5%	0%	44%
3	Residential-oriented	Low	56	12%	3%	0%	27%
4	Commerical-oriented	High	24	2%	9%	1%	57%
5	Commerical-oriented	Medium	51	2%	17%	1%	43%
6	Commerical-oriented	Low	34	1%	6%	0%	21%
7	Industrial-oriented	High	27	0%	1%	26%	65%
8	Industrial-oriented	Medium	34	0%	2%	40%	47%
9	Industrial-oriented	Low	15	0%	0%	8%	20%
10	Mixed building	High	53	13%	14%	2%	62%
11	Mixed building	Medium	76	16%	16%	2%	44%
12	Mixed building	Low	47	7%	7%	1%	27%
13	Mixed business	High	23	4%	6%	9%	63%
14	Mixed business	Medium	22	3%	4%	7%	44%
15	Mixed business	Low	10	0%	1%	1%	19%
			591	100%	100%	100%	

Distribution impacts by feeder archetype

- Feeders that have low to medium present-day utilization can absorb large amounts of incremental load growth prior to triggering upgrades
- Most avoided distribution capacity occurs on residential-oriented feeders that are already near the planning threshold (67%)

Distribution System Capacity MW-nominal

Illustration of distribution-sited resource impact

- On very cold winter days that set the distribution peak, flexible load is challenged by the persistence of high loads across the day and customer-sited solar quality is low
- In particular, the ability of electric vehicles to shift consumption is limited since there is a dual morning and evening heating load

Comparing clean fuels pathways with high electrification

Distribution System Capacity MW-nominal 12,000 10,000 Today 8,000 6,000 4,000 2,000 0 2022 2040 2045 2050 2030 ம ഹ 202 203 Clean Fuels Electric Economy

Liquid Fuels and Pipeline Gas Supply

THANK YOU

www.evolved.energy

Fuels accounting in electricity modeling

Power Plants Connected to Blends

Source: Annual Decarbonization Perspective 2022

Decision making in the face of uncertainty

- Resource adequacy (RA) modeling is based on probabilistic methods for extreme events
- When difficult to give probabilities to uncertain trends, RA modeling has tended to ignore them
- The importance of precision in assessing probabilities depends on the relative cost/benefit of different actions within a realized future

https://www.cartoonistgroup.com/cartoon/Frank+and+Ernest/2013-08-07/100238

Multiple factors are threatening system reliability

Expected System Cost

- Impacts of climate change
- More rapid electrification than expected
- Unrepresented covariance between outages
- "Reliable Imports" based on historical experience
- Slow siting, permitting, and construction
- Over-crediting of DR and distributed storage resources
- Accelerating retirement of coal
- Resistance to new thermal power plants

Recent focus on economic efficiency resulting in downward pressure on reserve margins

Brattle, 2018 Update: Estimation of the Market Equilibrium and Economically Optimal Reserve Margins for the ERCOT Region

Average 2050 daily supply & demand

Excluded dynamics when integrating forecasts

EnergyPATHWAYS is strong at exploring long-term 'what if' scenarios and weak at forecasting customer behavior and establishing a long-term economic outlook

Missing Dynamic	Impact on Results	Rational for Exclusion
Endogenous customer adoption	Potential for scenario inconsistencies, overly smooth customer behavior (especially in the near-term)	Customer adoption frequently is not 'economically rational'; When it is, ratemaking often changes or blunts signals sent by energy system fundamentals
Price elasticity of demand	A Carbon Price may reduce service demand, further reducing emissions, and increasing societal cost	Most elasticity is low outside of key industrial subsectors; policy choices could mitigate such impacts; comparable service demand makes communicating cost easier
Early retirement of equipment	Sufficient changes in operational cost could speed-up customer adoption	Helps add realism through friction; equipment with residual life often gets repurposed or sold as 'used'

Assessing Reliability Becomes Challenging in Low-Carbon Electricity Systems

EVOLVED ENERGY RESEARCH