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Prior work on low- and zero-carbon power systems (USA)

emissions reduction

Low carbon (up to ~80% decarbonized) Zero carbon (100% decarbonized)
m Sequential investment pathway m Steady-state “snapshot” (not
m H|gh geographic Coverage Sequential inveStment pathway)
s Multi-node transmission model m [solated sites/ISOs or copper-plate US
m Low temporal resolution for m No transmission (1-node system)
capacity-investment decisions* m <1 hrtemporal resolution
>
NREL 2012 — Renewable Electricity Futures Study = 2 1yearof VRE data
ReEDS: US, 80% [30'90%] emissions reduction Jacobson et al. PNAS 2015, 112, 15060
NREL: RPM Kammen et al. App/led Ziegler et al. Joule 2019, 3, 2134
EPA: IPM Energy 2016, 162, 1001 Caldeira et al. Energy Environ. Sci. 2018, 11, 914
EIA: NEMS SWITCH: WECC, 85%
EPRI: US-REGEN emissions reduction Sepulveda et al. Joule 2018, 2, 2403
| y, - - --------------=-=-"=-"=-"=-"=-"=-"=-"=-"=-""=-"=-"=-"=-"=-"="
NREL Interconnections : MacDonald et al. Nat. i Princeton Net-Zero Vibrant Clean Energy
Seam Study 2020: up | Clim. Change 2016, 6,526 '  America Study 2020 2020
o ! . o I
(UG ENSNEIDS Y SEE B LU0 S L) 7117 Many studies for Europe



This study: Zero-carbon power systems for the US °

Our approach:

m Co-optimized capacity & operation of m Technology costs: NREL Annual Technology
generation, storage, and transmission Baseline (ATB) 2019, 2030 “mid” as baseline

m Linearized model, chronological hourly weather m Hourly demand: NREL Electrification Futures
and load over 7 years (2007-2013, 61296 hrs) Study (2040 “Reference” electrification as

baseline, other scenarios as sensitivities)

m Zero carbon as central case; sensitivities for
nonzero carbon, nuclear, hourly reserves
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Modeled technologies

Included in all cases:

Zero-carbon technologies currently

being deployed at GW scale in the US
PV

Horizontal 1-axis tracking; NREL NSRDB weather
Wind

Reference: Gamesa G126/2500 (200 W/m2),

100m hub (additional turbines in sensitivity);
NREL WIND Toolkit weather

Li-ion batteries*

Independent energy capacity (battery cells) and
power capacity (inverter/interconnection)

*Left out of long-duration-storage sensitivities
Existing hydropower (no new capacity)

Run-of-river: Historical monthly availability (EIA
860 & 923), must-run

Reservoir: Historical monthly availability (EIA 860
& 923), flexible dispatch within each day

Included in some sensitivities:

m “‘Long-duration” energy storage (LDES)
Cost & performance based on pumped hydro
m Nuclear

Existing/new, variety of cost + performance
assumptions

m $9000/MWh load-shedding
m Natural gas combined- and open-cycle

NOT included:

m Offshore wind m Concentrated
m Carbon capture solar thermal
= Demand flexibility = Geothermal
m Coal/ oil m Bioenergy



Framing this work

This study is: This study is NOT:
m Primarily concerned with resource m An AC or DC optimal-power-flow or
adequacy in zero-carbon systems security-constrained dispatch study
m Technologically conservative Transmission flows are completely

controllable and highly aggregated

m A transmission/generation siting study
Generation and transmission assets are

Only techs currently deployed at GW scale

m An improvement on some aspects of
previous studies:

. highly aggregated
Copper plate (Caldeira, Jacobson) — _ . )
Explicit interregional transmission flows m An analysis of specific policy or
and capacity regulatory approaches
Isolated regions (Princeton, Sepulveda, s Economy-wide
Al i) —> (7] mterconn.ected oe We only model the electricity system (with
1 year of weather data (Princeton, NREL high-electrification sensitivities)

Seams, Sepulveda) — 7 years in base
case, 21 years in sensitivity = A pathway study

Seasonal timeslices (NREL ReEDS) — System snapshot, 2040 demand; hydro and
hourly co-optimized planning & dispatch transmission are the only brownfield assets
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Three types of transmission modeled

1. Intra-state “interconnection” s . e
lines for PV + wind W o =y

* Includes “spur lines” to nearest substation and
“trunk line” reinforcements to nearest urban edge
* Included in system cost, but not in inter-state
transmission capacity [TW-km] totals

“Trunk line” lodidl \“Spk‘ur line”
reinforcements connections
2. Inter-state intra-PA 3. Inter-state inter-PA
 Existing lines and new builds  Existing lines and new builds
« AC only « AC within same interconnect,

DC between interconnects

Intra-PA transmission
cost adders for PV
and wind [$/kWac-yr]:

annualized inter—state
<transmission cost [$/yr]>
installed PV and wind
(capacity within PA [kWac])




. Reductions in cost, storage, & capacity with regional coordination
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* SCOE = System Cost of Electricity [$/MWh]
= (annualized capex + opex) / (annual demand)

+ 1.0 $/MWh trans.
— 8.2 $/MWh SCOE

+ 1.2 $/MWHh trans.
- 9.6 $/MWh SCOE

+ 0.8 $/MWh trans.
— 6.3 $/MWh SCOE

+ Existing regional

PA+A USA-AC-DC USA+AC-DC USA+AC+DC
+ New regional

f\ﬁ\fiy\:\\j 2 J/j
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+ Existing inter-regional

+ New AC inter-regional
within interconnects

+ New DC inter-regional
across interconnects

Intra-PA AC B Inter-PAAC
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Cost
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components:



Two main benefits of inter-state transmission*

Northwest
W Mountain ™ MidwestN
W California MidwestS
I Central W Northeast Southeast

W Texas W MidAtlantic @ Florida

Capacity [GWpeak] Storage E/P [hours]
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1. Reduction in aggregate variability through spatial
averaging — Reduction in storage capacity + duration
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| Hydro (Res) Hydro (ROR) B Wind m PV B Storage B Inter-PA exchange -- Load|

* Additional benefits of transmission not resolved here:

n-1 security
Inertia / stability

Reduction in forecast uncertainty [Pfeifenberger 2020]
Sub-hourly balancing

2. Better access to high-quality
resource regions — More energy
from less PV/wind capacity

N w

Available energy [PWh]

Generation capacity [TWpeak]

States

22D

Mitigating regionally-correlated unmodeled
outages (e.g. icing, fuel scarcity)



Sensitivity analysis (USA + AC + DC) i

Electricity cost
[$/MWh]

Transmission
[TW-km]

0 20 40 60 80100 O 200 400 600 800 0 2

Available
energy [PWh]

Storage energy
[TWh]

Gen. capacity

[TWpeak]

[o>]
o

1 2 3 4 0 3 6 9

4
Baseline default# - ﬁ I O
2x transmission cost | | "Il ] [ T [ B
Transmission 5x transmission cost [ ENVEE |Vl E | [ ] || -
nonewacordcj gl |'m ¢ | [ B | |
Brownfield existing PHS [ | . ] | I I
noflex nuclear_existing | IRV : | D - | I | -
noflex nuclear_$12000/kW | TE [ ] [ [
noflex nuclear_$6180/kW | "IN | D . | I || I
New midflex nuclear_$6180/kW | | I | . — I |- I
nuclear fullflex nuclear_$6180/kW| I | . I L || -
fullflex nuclear_$5000/kW| Ml | |- - - | .
fullflex nuclear_$4000/kW| = Il | m P | [
2030low VRES&S prices [l | | - N C_LL]
VRE + LDES ($5/kWh) il | Ul sess W 0 I
storage LDES ($50/kWh) |l | I |0 [ |
prices EIA regional cost scalers |l | . |1 I |
2018 VREGS prices NN | (EME @ W — W | ——
Leitwind:LTW90/1000 | "I F [T 1 I T
Wind Suzlon:$120/2100 | - I LI | |-
, WTKclass3 il | | R |
turbine Vestas:V110/2000 il | i I |
WTKclass? il | mmm I SN |
demand Medium_Moderate |l N ] | [ [
Electricit demand High Repid il | TS e |-
demand  _ demandHigh SowjEEEl | CEEN s |
demand 2050_High_Slow |l | — B Nl Be
0.5x VRE available ' I B i
VRE land 0.2x VRE available el | wEE = M| ——
availability 0.1x VRE available I mm . [ K
$9000/MWh load shedding | IR N . [ ] [ BB
Reliabilit 20% reserves | | T ] [ ] |E—
y 50% reserves [ | CE | |
100% reserves | L | Il |
2030mid VRES, 2030low gas |l =~ | T | | . 129 | -
Allow  2030mid VRES, 2030mid gas |l L I | I 31% | N
as 2030mid VRES, 2030high gas |l | | 5 [ § ] 73% | I
gas, 2030low VRES, 2030low gas |l W | | (8] 38% | I
no 2018 VRES, 2030low gas |l I | ! ] 6% | I
policy 2030low VRES, 2030high gas |l | . N 81% | |V
2018 VRES, 2030high gas |Iml T 1 | ; 1] 50% | -

m Even at 5x transmission cost, installed
transmission capacity increases ~30% and
reduces SCOE by ~6 $/MWh

m At central projected prices ($6180/kW), some
nuclear is installed when available, but with
minor impact on electricity cost (~$2/MWh)

m Achieving 2030 “low” price projections for
wind, PV, and Li-ion reduces system cost
more than $4000/kW flexible nuclear or
$5/kWh long-duration storage

m Low-specific-power (low-windspeed) wind
turbines reduce electricity cost

M Inter-state trans.
M Interconnection

m Cross-sector electrification

W CCGT increases capacity, but insignificant
oo impact on electricity cost
B Wind ) e o
Nuclear m Extent of “overbuilding” is similar
Curtailed load between zero-carbon and no-policy
M PHS
Hydro (ROR)

m Every USA scenario is
cheaper than isolated-PA
scenario (107 $/MWh)

Hydro (Res)

B AC, inter-PA
B AC, intra-PA
DC
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Sensitivity analysis with limited transmission
Electricity cost [$/MWh] (6 transmission scenarios)
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WTKclass? NN 11 *+  $5/kWh long-duration energy storage

Demand demand Reference_Rapid [N 0
demand Medium_Moderate [N D
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demand 2050_High_Slow [N — Multiple potential paths to low-cost
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Hourly resource variability :

—— Load (fraction of peak) 8 Wind CF s PV CF CO 2010



Interannual resource variability — Storage operation *

Central scenario: USA + AC + DC; zero carbon; Li-ion batteries

N
(&)

1200¥%

N O
o
1

NO
o
1 1

NO
o
1

N O
oo

Storage energy level [TWh]
N O
oo

12012

N O
o

12013

o
o

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec



Interannual resource variability — cost *

System cost of electricity (SCOE) [$/MWh], 2007-2013 VRE
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SCOE can vary by 2x between years for isolated states; Interannual variability is smaller at the scale
most expensive year varies between states of the contiguous US, but still important



Lower decarbonization costs for interconnected system
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Isolated states

100%

Electricity cost increases significantly on approach
to zero carbon for individual states,
but to a much smaller extent for full-US system

Reaching 100% for the full US with new interregional
transmission is roughly as expensive as reaching 95%
on an isolated state-by-state basis



Primary findings

m Inter-regional transmission
significantly reduces costs and

storage needs in high-VRE systems

m Interannual variability is important,

especially for isolated systems
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m Zero-carbon electricity
system for contiguous US is
feasible with today’s tech at
1-hour multi-year resolution

m Nuclear and “long-duration”
storage have the potential
to reduce system cost, but
are not required, and have
less impact than reduction
in VRE + Li-ion prices
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m Decarbonization costs are
significantly lower for
integrated US-scale system
than for isolated states
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