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a grid that is risk aware for clean electricity

Objective

To develop a scheduling & dispatch approach that effectively considers
the risk posed by weather-based and intrinsic uncertainty, and is
computationally tractable so it can be implemented now.

GRACE will
-minimize operating costs,
-maintain or improve reliability,
-maintain or improve utilization of low-carbon resources

-quantify the impacts of grid resources on system risk
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Stochastic Model
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GRACE’s Improved Scheduling and Dispatch System

Uncertainty characterization model
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Uncertainty Characterization
Forecast errors of load and solar
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Probabilistic forecasts

* 3 components to investigate the

. DEP Load
GRACE benefits i -
_ . . 9000 probabilistic forecast
* Actual time series (observations) —— expected value
. . . e . ——single-poi
* Single-point (deterministic) forecast %‘8000 Singlerpoint fo k="
* Probabilistic forecast 72'7000-
ey . « e 4. o
* E[Probabilistic] = deterministic % 6000
 Actual can be historical or synthetic 5000

20 40 60 80 100 120 140 160
Forecast horizon (hrs)

The DEP load for the first 7 days of 2019



Generation of probabilistic forecasts

Methods Quality assessment
* Historical sampling  Are the scenarios realistic?
* Monte-Carlo approaches * How do the different methods

compare in realism and forecast

e Lattice scenarios (baseline)
accuracy?



Quality assessment of synthetic datz

PDF & CDF
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Step changes
Comparison between historical observation and probablistic forecasts of DEP demand load on January 1st, 2019.




GRACE’s Improved Scheduling and Dispatch System

Uncertainty characterization model
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Risk-adjusted stochastic UC model

Energy and Reserve Availability

Uncertainty v
characterization from _ .
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Duke Energy’s Energy Management System (CP-EMS)
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Overview of the RA-EMS
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Risk-adjusted stochastic UC model vs CP-deterministic

Probabilistic da- forecasts Real time 250 actuals

taken from 250 scenarios

a) Compare 12 reduced scenarios to the original 250 scenarios Syste m Costs a re 0 n ave ra ge
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2% lower than current
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Cost reductions vary from 0%
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Differences in operatlons

Steam

— ['DE-EMS']
— ['RA-EMS']

Comblned Cycle

Fixed cost reduced by
5.3% and fuel cost
reduced by 1.3% for a
total of 2% reduction
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GRACE’s Improved Energy Management System

A “book’ is a pair of
1) probabilistic forecasts
2) RAS-UC solutions
A library is a collection of books for
common conditions regarding:

Probabilistic Risk-Adjusted UC
Forecast Minimizes a function of expected cost and risk

Risk-Aware

Requrements - Units’ availability and de-rating
Libraries Searching Engine & - Fuel prices
7¢ = - / Several libraries are required to

, : iy
SOLUTION represent uncertainty on l-JnItS
LIBRARIES performance and fuel prices

FOUR USES OF THE LIBRARIES & SEARCHING ENGINE
1. To select starting solutions for the RAS-UC

2. To identify scenarios to enforce in the first-stage
_To identity binary variables to fix and constraints to relax
4. To avoid running the RAS-UC - Extracting Reserve Targets for CP-UC .




Learning from solutions libraries

Energy and Reserve Availability
v

Risk-Adjusted Week-ahead UC

Uncertainty
characterization from

Minimizes a function of expected cost and risk

¥ \
1st stage: No load, 2nd stage: start-up of Expected Value of Cost Risk-Aware Reserve Targets
start-up and shut- peakers, production costs,
down costs cost of load shedding Risk=e.g., CVaR
Minimize Number of Number of Number of Number of E
(1-B)Expected Cost + BCVaR of Cost scenarios in binary et A e, Lo
probabilistic SR Y R tot.al variables .constramts time
Subject to: g Bacie in RAS-UC  in RAS-UC (h)
First Stage:
Start-up/shut-down logic For all units 12 868,876 626,4 0.18
Min up/down time and time §g i;g;;gg ;gggigg gg;
= i eriods 137, ,268, g
Second l;ltja;g?d hydro storage constraints p 50 3,407 998 0.349'17 5a5

Start-up/shut down peakers
Ramping up/down limits For all Some binary variables are Some constraints are
Min / max generation limits scenarios always 1 or zero never binding

power balance constraints perarea | and time
transmission capacity limits periods We could set the commitment Use ML to identify We could eliminate
VRE curtailment limits variables of those power variables and e RS
Unserved demand limits _ generators as inputs constraints

(CVaR constraints)




GRACE’s Improved Scheduling and Dispatch System

Uncertainty characterization model
\.Neather based 2% Probabilistic Forecasts of
.U. 0 D - Assets’ Performance Energy and Reserve Availability
A nw - and Grid’s Operating Conditions ‘
Forecasts(n € 1..N) | ne
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Use 1: Retrieve RAS-UC initial solution

Use 2: Determine which RAS-UC binary

HOW tO use the |Ibra rIeS? variables can be eliminated

Use 3: Determine which RAS-UC
constraints can be eliminated
Use 4: Determine which scenarios must
be enforced in the first-stage of a
decomposed RAS-UC

Use 5: Retrieve Estimated Risk-Aware
Reserve Targets

probabilistic

forecasts
operational
conditions -
find find cost find operational
identical similarity similarity

library of
solutions

NO

YES




Conclusions
* GRACE’s approach is promising

* A risk-adjusted stochastic unit commitment 2@ grld that is risk aware for clean electricity

plus a look-ahead balancing UC reduce
expected value of costs and increase

reserves availability * We seek collaborators with
« We expect better results with the 2030 access to
fleet * weather measurements & forecasts

. . . . . * power-plants operations
* The libraries search system is promising

* More work needed to develop the four
different uses of the libraries of solutions

Thank you! Dimitris Floros

grace-arpa-e@duke.edu dimitrios.floros@duke.edu



