UFLS and DER: Shadows on the tombstone of old Under-Frequency Load Shedding

ESIG Spring Workshop 2021 Session 9: Distribution System Planning Evolution

Nick Miller

3-30-2021 Final Version

Nick Miller

PRC-006-3 – Attachment 1

Underfrequency Load Shedding Program Design Performance and Modeling Curves for Requirements R3 Parts 3.1-3.2 and R4 Parts 4.1-4.6

Simulated Frequency Matt Remain Between the Overfrequency Trip Stelling Simulated Frequency Matt Remain Between the Overfrequency Trip Modeling Curve Curve

Generator Overfrequency Trip Modeling (Requirement R4 Parts 4.4-4.6)
 Overfrequency Performance Characteristic (Requirement R3 Part 3.2)

- Overfrequency Performance Characteristic (Requirement R3 Part 3.2)
 Underfrequency Performance Characteristic (Requirement R3 Part 3.1)
- Generator Underfrequency Trip Modeling (Requirement R4 Parts 4.1-4.3)

- Under Frequency Load Shedding (UFLS)
 - critical safety net to stabilize balance between gen & load
 - for severe lack of generation
 - automatic disconnection of end-use loads,
 - typically, through tripping of pre-designated distribution circuits
- NERC Reliability Standard PRC-006-3
 - establishes design/doc requirements for UFLS to
 - arrest declining frequency,
 - assist recovery of frequency
 - provide *last resort* system preservation measures.

UFLS and DER today

- (draft) NERC Guideline* discussions cover a significant amount of the present concern:
- DER today exacerbates some aspects of dynamics that require UFLS.
- DER creates uncertainties, and therefore can compromise the efficacy of traditional UFLS

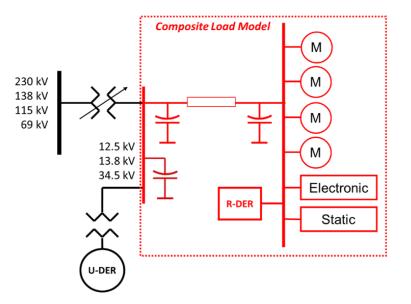


Figure 2.1: DER Modeling Framework
Source: NERC

*NERC Reliability Guideline: Recommended Approaches for UFLS Program Design with Increasing Penetrations of DERs March 2020; June 2021 (latest draft; out 3/21)

Declining Efficacy of UFLS with (PV) DER

 Each added MW of DER generation reduces the efficacy of basic UFLS:

P_{UFLS} / P_{load} drops

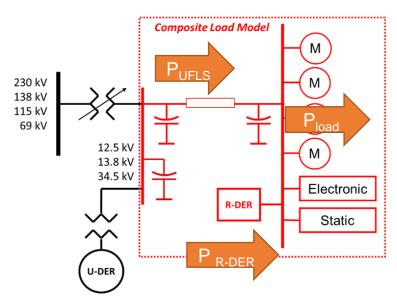
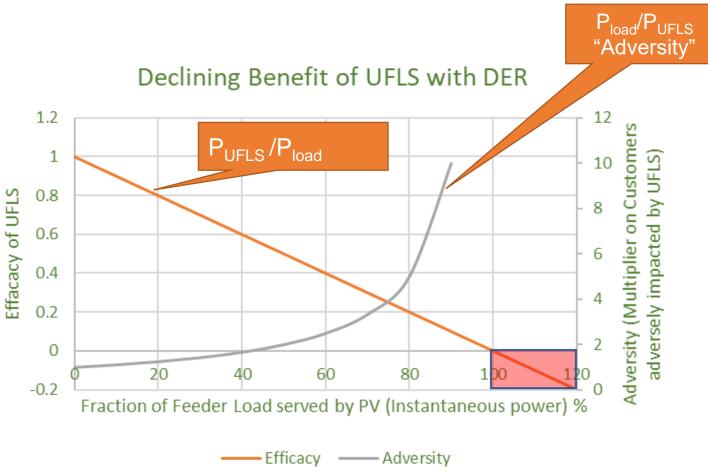
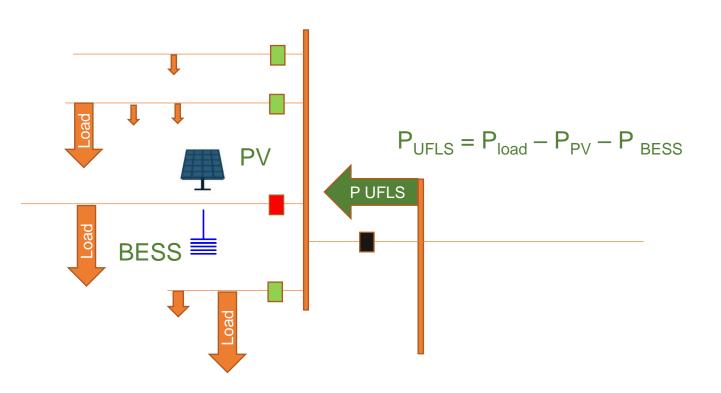



Figure 2.1: DER Modeling Framework Source: NERC

Not yet, but soon...

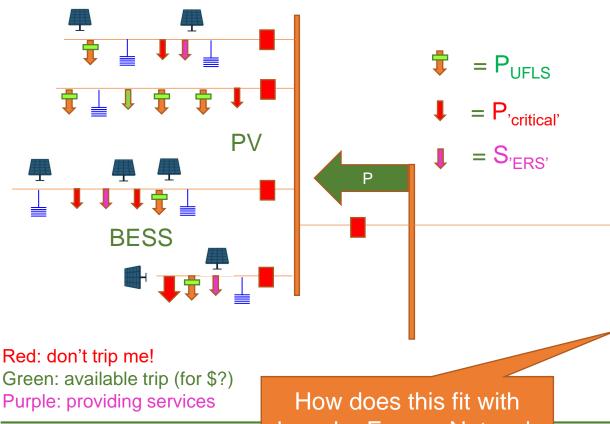
- Occasional high instantaneous penetration of (PV) DER is coming for many systems.
- Subsystems, that might depend on UFLS during breakups, and entire small (e.g. island) systems have reached this point today.



UFLS and High DER penetration, immediate future

- Some "adversity" tolerable. A cost of having DER.
- But what is the *threshold of pain*?
- At 50% DER instantaneous penetration, *twice* as many customers are impacted as with a scheme that avoided tripping DERs.
- Dynamic or adaptive UFLS.
 - Are a big step forward. Designed to decrease uncertainty introduced by distributed PV. Total P_{ULFS} MW seen by the BPS that is tripped per operation is dynamically set and known *a priori*.
 - Prioritization (based reducing adverse societal impacts and maintaining efficacy)

Cartoon of feeder and UFLS



Red: don't trip me! Green: available trip (for \$?)

- Gross simplification, but useful for discussion
- Basic: trip black breaker
- A systemically superior solution trip the green switches, and leave the red switch closed.
- Not simple or cheap, and maybe not fair.
- But, yields a more secure system with fewer customers interrupted, for given event.
- Dynamic or adaptive concepts (like HELCO's) could be extended to this granularity (see 2nd bullet!)
- Retained DER can provide not only power, but other essential reliability services.
- Initially smarter/adaptive UFLS must have sufficient situational awareness to avoid tripping feeders with desirable resources.

Cartoon of future (?): where we're (possibly) going

- With gabboons of DER, feeder level won't cut it.
- With really low inertia, speed is more important
- How to get there?
 - Autonomous? Communication?
 - Staggered? Adaptive?
 - Situation awareness?
 - Restoration?
 - Market/tariff design?
 - Consequences of mis-triggering?
- Some completely different paradigm needed?
- Are there complementary enabling technologies

 i.e. other functions/benefits from "properly" specified requirements? (AMI? RT market functions? Other ERS? System restoration)

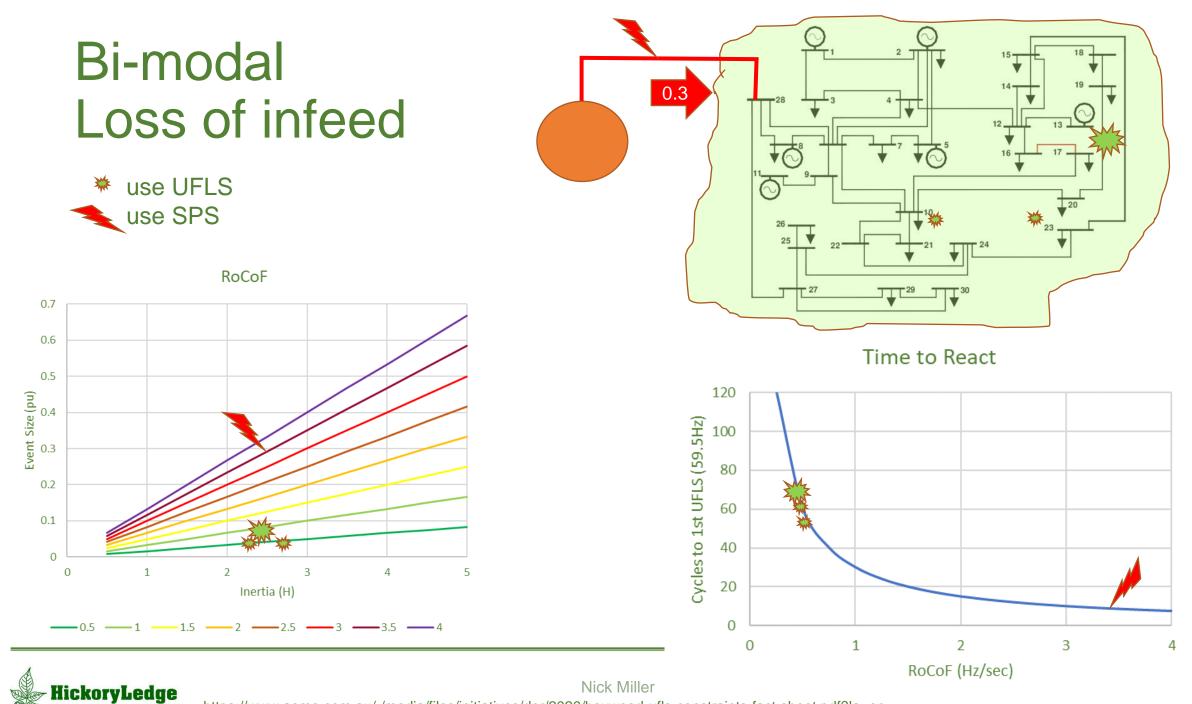
How does this fit with broader Energy Network of previous speaker?

Nick Miller

It's not just negative load: DER and ERS

- Question is much broader than just interrupting more customers than necessary.
- DER is more than just PV
- What essential reliability services are the DERs providing? Are those services needed during frequency events?
- Alternatively, will all ancillary/essential reliability services from distributed resources be barred from any feeders included in UFLS schemes?
 - Is that socially and economically acceptable?
 - Is it even legal? Per FERC Order 2222
- Eventually, UFLS must have sufficient situational awareness

Is situational awareness a natural part of broader energy networks?


Not fast enough for the "big ones"

- In low inertia systems, subject to big events, UFLS is going to become progressively less secure.
 - Measuring frequency and RoCoF takes a few cycles to do well.
- Augmentation of UFLS with SPS, etc. for specific big events will extend the life of UFLS.
- Some systems are "bi-modal":

Breaker open signals are high fidelity

- A single or very short list of huge (terrifying events)
- Lots of lesser, or N-x or HILF events for which UFLS still makes sense.
- Institutional aversion to RAS, SPS and other information and communication-based remediation is expensive!

https://www.aemo.com.au/-/media/files/initiatives/der/2020/heywood-ufls-constraints-fact-sheet.pdf?la=en

Synopsis

- Efficacy of present UFLS, in terms of adverse customer impact, will drop as more distributed resources are deployed.
- The days of traditional "set it and forget it" UFLS are drawing to a close.
- We are there in some places already .
- Next generation of UFLS (and supporting infrastructure) must be more selective and situationally aware.
- Move farther away from depending on UFLS: more autonomous and voluntary responses; evolve the need for UFLS into oblivion. Look for ways to achieve multiple benefits with new infrastructure/capability, which...
- Will increase reliability, reduce adverse customer impacts, allow for DER to provide a wider variety of essential reliability services, consistent with broader objectives of reliability, economy and fairness (and FERC Order 2222).
- There is good work underway (e.g. NERC, others), but we have a ways to go to get to some critical answers ...

Questions

- At what point is the coarseness of the present UFLS approach societally unacceptable?
- What is the line between protection and control?
- How to address the communications bandwidth problem?
- Could "slow" situational awareness with system-wide reach (per 'open networks' discussion), paired with fast autonomous action be a path forward?
 - i.e., are frequently updated, but autonomous (frequency sensitive) controls a solution?
- Why are we using involuntary disconnection as a tool anymore?
 - Aren't there customers that would disconnect for a price?
 - Isn't this just another ERS to be procured?
- What technologies are suitable?
- What economic/markets are suitable?
- What is fair?
- How will cyber-security be affected/built-in?
- Lots of others....

