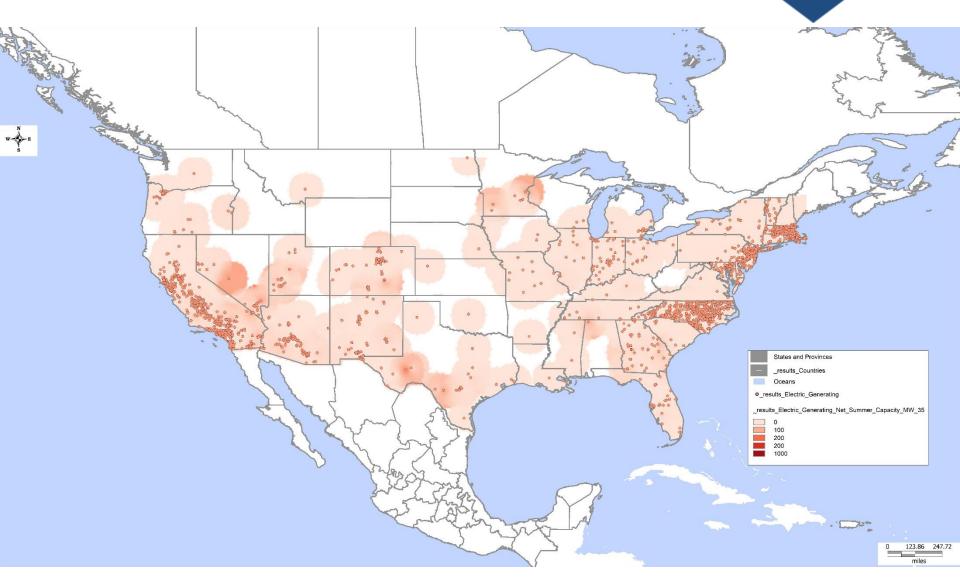
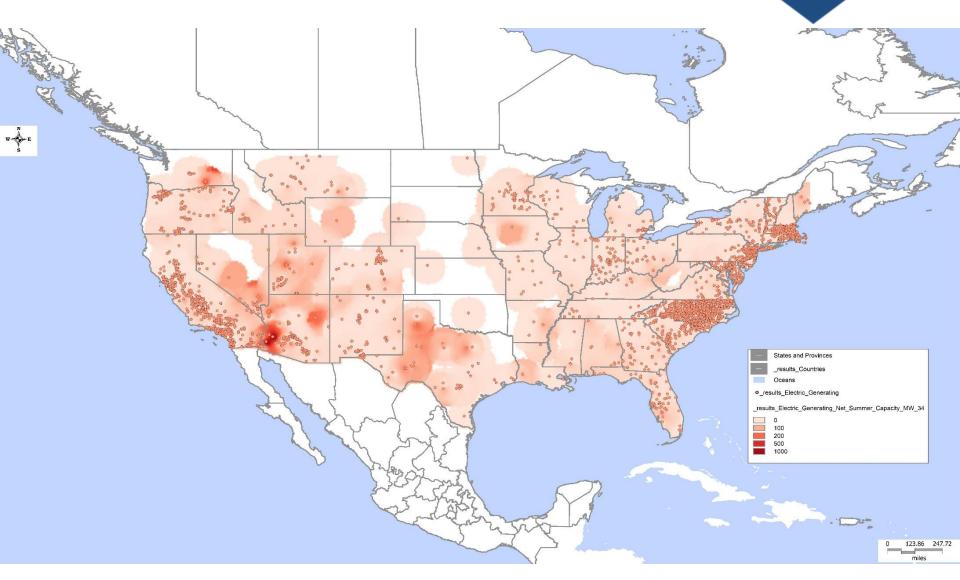
NERC

DER Modeling Challenges

Updates and Forward-Looking Perspectives

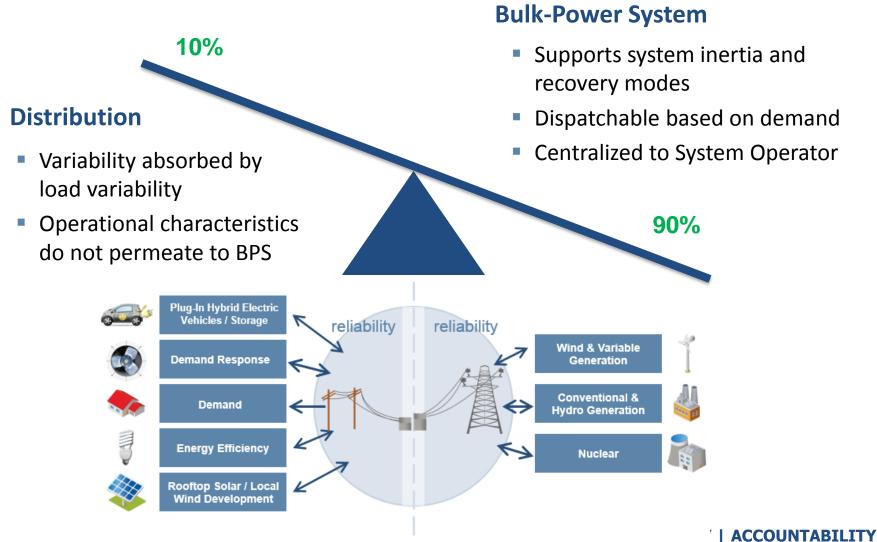
Ryan Quint, Advanced Analytics and Modeling, NERC UVIG Spring Technical Workshop March 2018





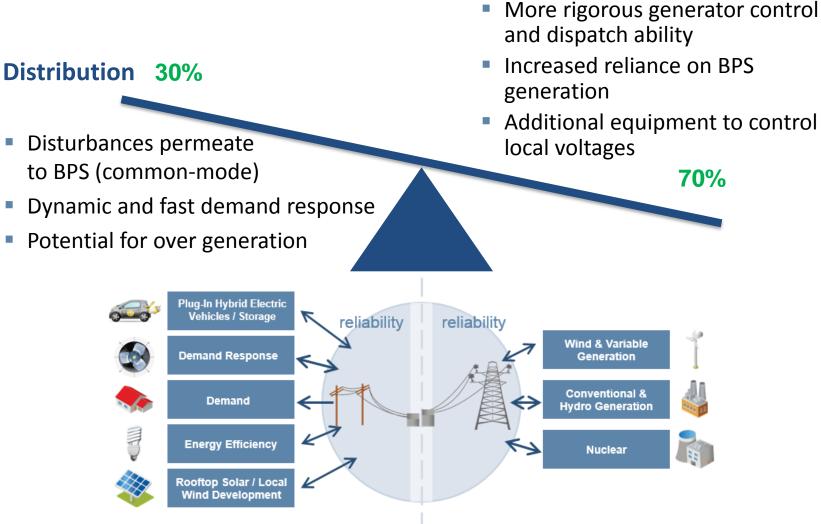
Current Solar Production

Current and Planned Production (Based on 2-3 Year Commitments)


RELIABILITY | ACCOUNTABILITY

NERC

NORTH AMERICAN ELECTRIC RELIABILITY CORPORATION

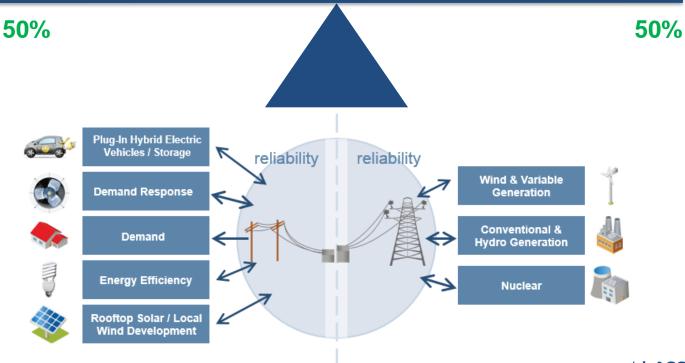

The Control Shift (1 of 3)

The Control Shift (2 of 3)

Bulk-Power System

| ACCOUNTABILITY

The Control Shift (3 of 3)


Integrated Power System

Distribution

- DER must act as a system resource
- Storage, curtailment, coordination, grid support, and control
- Operator or aggregator function is needed

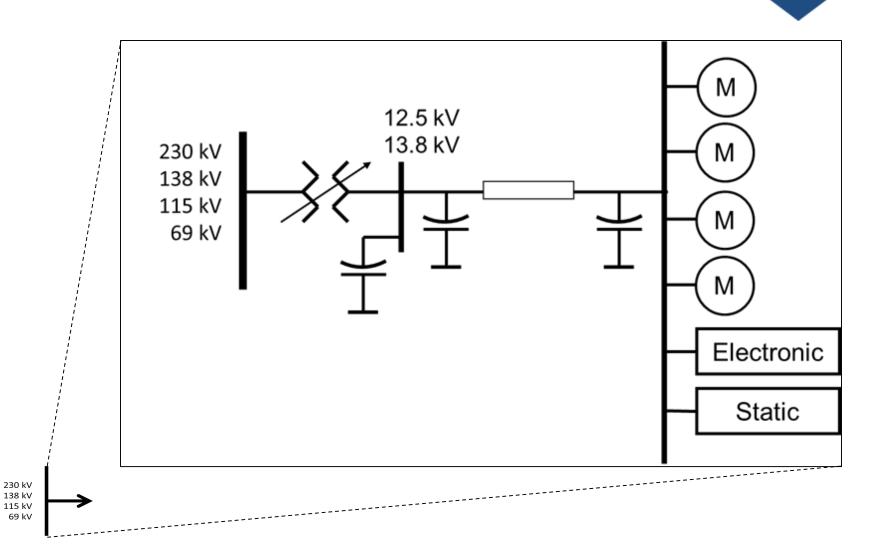
Bulk-Power System

- Supports electricity services
- Long-haul power transfers provider
- Reliability backbone

#1: "How do I model DER in planning studies?"

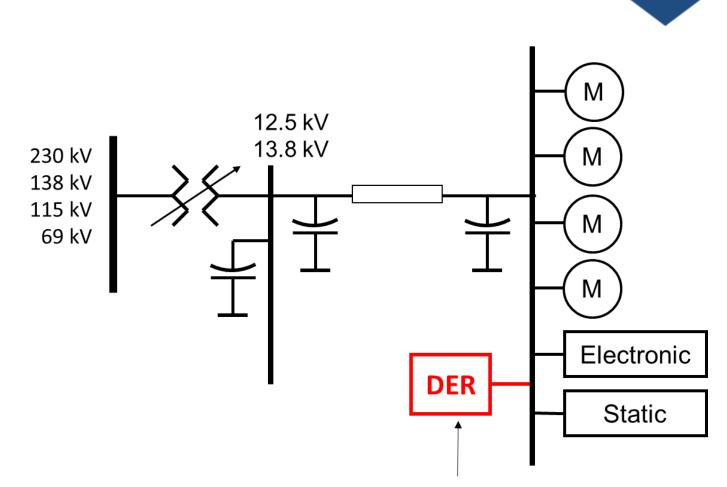
#2: "But what models do I use?"

#3: "What about the future?"



"How Do I Model DER in Planning Studies?"

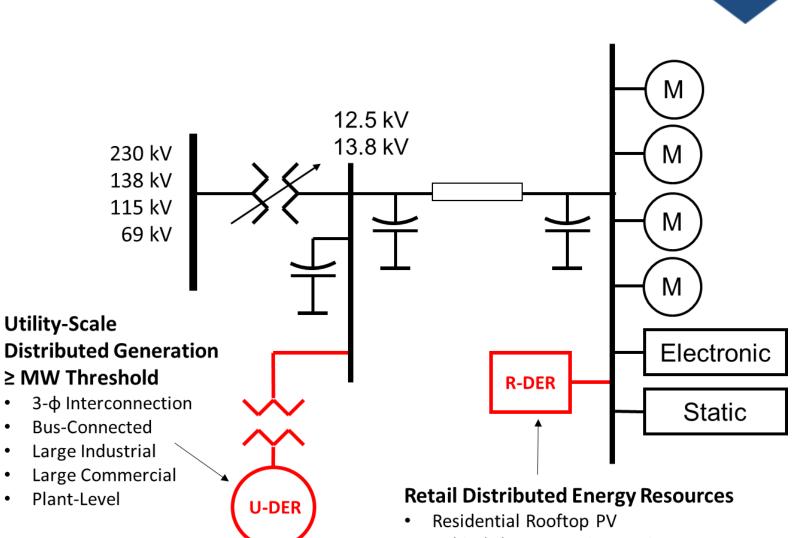
DER Modeling Framework



Composite Load Model

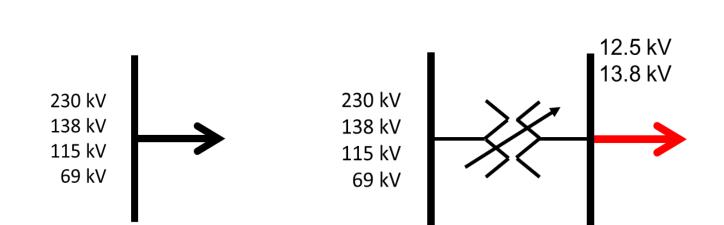
Composite Load Model + DER

Distributed Energy Resources


- Residential Rooftop PV
- Behind-the-Meter Generation

- Utility-Scale Distributed Energy Resources (U-DER): distributed energy resources directly connected to the distribution bus or connected to the distribution bus through a dedicated, non-load serving feeder.
 - Three-phase interconnections;
 - Can range in capacity (e.g., 0.5 to 20 MW), although facility ratings can differ.
- Retail-Scale Distributed Energy Resources (R-DER): distributed energy resources that offset customer load. These DER include residential, commercial, and industrial customers.
 - Typically, the residential units are single-phase
 - Commercial and industrial units can be single- or three-phase facilities.

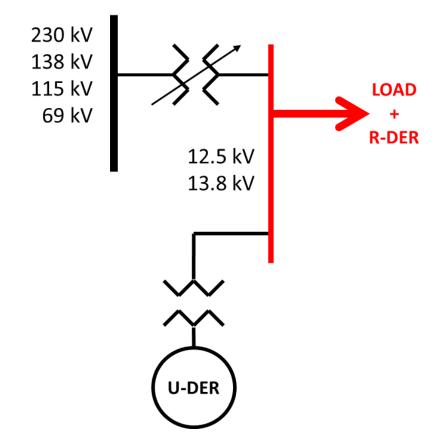
Composite Load Model + DER



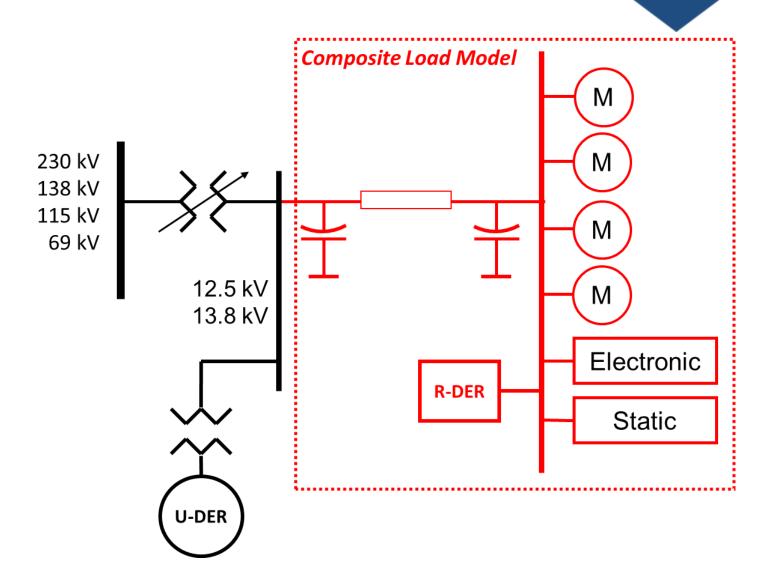
٠

Behind-the-Meter Generation

R-DER in Powerflow



	Number of Bus	Name of Bus	Area Name of Load	Zone Name of Load	ID	Status	MW	Mvar	MVA	S MW	S Mvar	Dist Statu:		Dist Mvar Input	Dist MW	Dist Mvar	Net Mvar	Net MW
1	2	Two	Тор	1	1	Closed	80.00	20.00	82.46	80.00	20.00	Closed	40.00	0.00	40.000	0.000	20.000	40.000
2	3	Three	Тор	1	1	Closed	220.00	40.00	223.61	220.00	40.00	Open	110.00	0.00	0.000	0.000	40.000	220.000
3	4	Four	Тор	1	1	Closed	160.00	30.00	162.79	160.00	30.00	Closed	80.00	0.00	80.000	0.000	30.000	80.000
4	5	Five	Тор	1	1	Closed	260.00	40.00	263.06	260.00	40.00	Open	130.00	0.00	0.000	0.000	40.000	260.000
5	6	Six	Left	1	1	Closed	400.00	0.00	400.00	400.00	0.00	Closed	200.00	0.00	200.000	0.000	0.000	200.000
6	7	Seven	Right	1	1	Closed	400.00	0.00	400.00	400.00	0.00	Closed	200.00	0.00	200.000	0.000	0.000	200.000

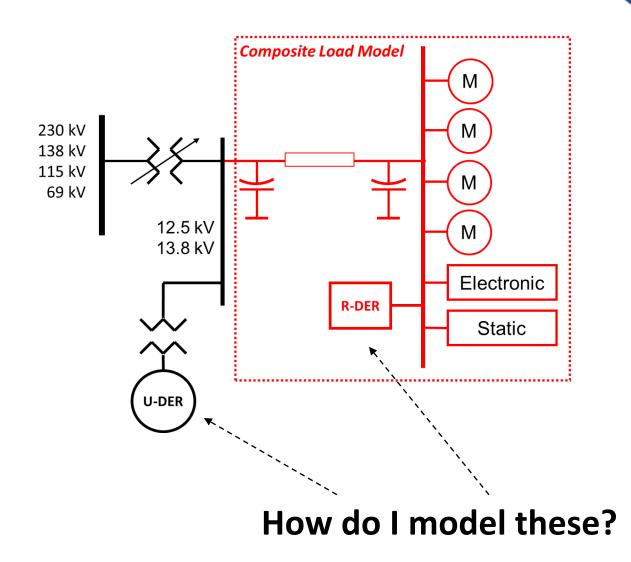


U-DER + R-DER in Powerflow

U-DER + R-DER in Dynamics

Table 1: Example of U-DER and R-DER Requirements							
Criteria	Description	Threshold					
U-DER Modeling	Gross aggregate nameplate rating of an individual U-DER facility directly connected to the distribution bus or interconnected to the distribution bus through a dedicated, non-load serving feeder	MVA					
R-DER Modeling	Gross aggregate nameplate rating of all connected R-DER resources that offset customer load including residential, commercial, and industrial customers	MVA					

- NERC DERTF recommended R-DER threshold = 0 MVA
 - "don't load net the DER"
- U-DER modeling threshold may vary
 - Bright line threshold not recommended



"But What Models Do I Use for the DER?"

DER Models and Modeling Parameters

DER Model Selection

• U-DER

- Type of generating resource (e.g., recip engine, wind, solar PV, BESS)
- Distribution bus nominal voltage where the U-DER is connected
- Feeder characteristics for connecting U-DER, if applicable
- Capacity of each U-DER resource (Pmax, Qmax)
- Control modes voltage, frequency, active-reactive power priority

R-DER

- Aggregate capacity (Pmax, Qmax) of R-DER for each feeder or load as represented in the powerflow base case
- Vintage of IEEE 1547 (e.g., -2003) (or other relevant standard reqs.)
- As available, aggregate information characterizing the distribution circuits where R-DER are connected

- Use gentpj model with Kis = 0
- If modeling information available, use that data
- Otherwise, use engineering judgment
- Examples provided in NERC guideline, for reference

Table 2.1: Synchronous DER Default Model Parameters							
Parameter	Steam	Small Hydro	Gas				
MVA	14	32	15				
T'd0	6	6	6.5				
T"d0	0.035	0.027	0.03				
T'q0	1	022	1				
-7// A	0.025	0.005	0.00				

- Most detailed models available
- Complex, often not necessary for interconnection-wide modeling.
- Other models may be more suitable and easier to use for representing DER
- May be useful for detailed interconnection studies, large capacity resources relative to local interconnecting network, high penetration systems, or other special studies
- Planners should determine appropriate situations where complex models useful for modeling DER

- Interim solution for BPS-connected solar PV
- Developed prior to 2nd generation models being developed
- Not implemented consistently across software platforms.
- Use of the PV1 model is not recommended.
 - For detailed solar PV modeling use 2nd generation renewable models
 - For aggregated DER use PVD1 and future DER_A

- Most flexible and user-friendly model for R-DER solar PV
- Reasonable representation for U-DER, particularly when detailed information of equipment and controls not available
- May not be adequate for detailed system studies or high DER penetration DER systems

- Currently being implemented and benchmark tested by software vendors
- Should be released in 2018
- Simplified version of 2nd generation renewables model(s)
- Parameter list size similar to PVD1 (relatively small)
- Additional features to PVD1
 - Frequency controls
 - Voltage, power factor, and reactive power controls
 - Inverter cutouts for aggregated response
 - Fractional re-energization
 - Ramp rate limits
- Recommended model once implemented

Table 3.1: U-DER Modeling Options							
BPS Model Options							
Model	PSLF	PSSE	PW	PT	V&R		
Synchronous Machine Models	Х	Х	Х	Х	Х		
2 nd Generation Renewable Models	Х	Х	Х	Х	Х		
PV1	Х	Х	Х	X1	-		
PVD1	Х	-	Х	-	-		
DER_A ²	-	-	-	-	-		

"What About the Future?"

Considerations Moving Forward

DER Modeling Perspectives

DER Modeling Aspects	Progress
DER Monitoring, Observability, and Forecasting	
DER Powerflow Modeling Capability	
DER Powerflow Modeling Practices	
DER Dynamic Model Availability	
DER Dynamic Modeling Practices	
DER Performance – IEEE Std. 1547	
DER Performance Modeling	

- Guidelines
 - Reliability Guideline: Modeling Distributed Energy Resources in Dynamic Load Models – <u>HERE</u>
 - Reliability Guideline: Distributed Energy Resource Modeling <u>HERE</u>
- Technical Reports
 - Distributed Energy Resources Connection Modeling and Reliability Considerations – <u>HERE</u>

Questions and Answers

Ryan Quint, PhD, PE

Senior Manager, Advanced Analytics and Modeling North American Electric Reliability Corporation Office (202) 400-3015 Cell (202) 809-3079 ryan.quint@nerc.net