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Introduction

Introduction Projected System Strength in the NEM

System strength determines how a power system can securely
and reliably operate upon various contingencies.

Figure 1: 2018-19
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Introduction

Introduction Projected System Strength in the NEM

System strength determines how a power system can securely
and reliably operate upon various contingencies.

With the current trend, in 2028-29, according to Australian
Energy Market Operator (AEMO)’s Integrated System Plan
(ISP), more points in the NEM will have low system strength.

Figure 2: 2028-29

Dr. Behrooz Bahrani, Director of Grid Innovation Hub April 19, 2023 3/54

Power Engineering Advanced

Research Laboratory [PEARL]



Introduction

Introduction Projected System Strength in the NEM

System strength determines how a power system can securely
and reliably operate upon various contingencies.

With the current trend, in 2028-29, according to Australian
Energy Market Operator (AEMO)’s Integrated System Plan
(ISP), more points in the NEM will have low system strength. In
2038-39, the situation can be catastrophic.

Figure 3: 2038-39
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Introduction

Introduction Projected System Strength in the NEM

System strength determines how a power system can securely
and reliably operate upon various contingencies.

With the current trend, in 2028-29, according to Australian
Energy Market Operator (AEMO)’s Integrated System Plan
(ISP), more points in the NEM will have low system strength.
In 2038-39, the situation can be catastrophic.

Most of these low system strength areas overlap with REZs,
which means more farms will be integrated into these weak areas.

Figure 4: 2038-39
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Introduction

Low System Strength Problems

As identified by TB-671-2016-B4-62 CIGRE Working Group Report, integration of renewable energy farms into networks with
low system strength can cause:

control interactions and instability,

failure to ride-through disturbances and faults,

electromechanical oscillatory stability,

islanding issues,

sub-synchronous oscillatory behavior,

inability of farms to inject their maximum power.
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Introduction

Project Summary

Project Aims:

classify/describe stability issues likely to happen in weak grids,

identify grid properties/value-range/scenarios under which above issues are likely to be encountered,

propose innovative allocation, sizing, and control strategies for grid-strengthening assets such as SynCons and
grid-forming inverters,

enhance the industry understanding of the interaction of farms with other assets in the network such as grid-forming
inverters and SynCons.

Project Outcomes:

increased penetration of solar/wind farms unlocking future investments,

maximised generation capacity of existing farms located in weak networks,

increased reliability/security of the grid as the renewable energy penetration grows.

Project Budget:
The project duration was two and a half years and started in July 2020, and the studies were primarily done at Monash
University. The total budget was $1.36M, and the funding requested from ARENA is $559k (41%). Monash Grid Innovation
Hub provided $100k as cash contribution. The combined in-kind contribution of all partners were $708k.
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Introduction

Project Tasks

Task1 - Grid Classification & Test-Bed

□ Weak Grid Classification

□ Quantification of Stability Conditions for
Wind/Solar Farms

□ Test-bed Development based on
Northwestern Victorian Grid

Task2 - Grid-Strengthening Solutions

□ Synchronous Condensers: Allocation and
Sizing

□ Grid Forming Inverters: Control,
Allocation, Sizing, and Black-start
Capability

Task3 - Internal Controllers & Interactions

□ Farm Voltage Control for Damping
Northwestern Victoria Oscillations

□ Farm Synchronisation with Weak Grids

□ Interaction of Wind/Solar Farms, SynCons
and Grid Forming Inverters
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Introduction

Project Partners
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Introduction

Research Areas of the Project:

Grid 
Following 
Inverters
(GFLIs)

● Nonlinear Transient Stability 

Analysis of GFLIs

● Small-Signal 

Synchronization Stability 

Enhancement of GFLIs 

● Output Power Capability of 

GFLIs

● Modeling, Analysis, Stability 

Enhancement, and 

Impedance Measurement of 

GFLIs

Power-
Synchronised 
Grid Following 

Inverters
(PSGFLIs)

● Optimzation-based PSGFLIs

● Linear-Parameter Varying 

control (LPV-PSGFLI) 

● Impedance-based Stability 

Analysis  and Transient 

Stability Analysis of LPV-

PSGFLIs

● Enhanced frequency control 

(ePSGFLI)

● Double synchronous 

reference frame control (DS-

PSGFLI)

Synchronous 
Condensers 
(SynCons)

● Optimal Allocation and 

Sizing of SynCons

● A Data-Driven SynCon

Exciter Controller Design

● Quantifying Stability in 

Inverter-based Weak Grids

Grid Forming 
Inverters
(GFMIs)

● Generalized VSG for GFMIs

● H∞-based Control for GFMIs

● Multivariable Control for 

GFMIs 

● Grid-Forming Capabilities 

for Wind Farms

● Adaptive Control for VSGs

● Virtual Resistance for Post-

fault Oscillation Damping of 

GFMIs
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Grid-following Inverters

Advantages

the most common type of inverters in power
systems worldwide

Simple structure

Well-established control technique

Good performance in strong grids

Stable under various disturbances (frequency
deviations)

• Disadvantages

Poor performance in weak grids

Small signal instability issues (e.g., PLL).

needs an external grid ⇒ Low system strength
⇒ failed synchronization
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Simplified model of a grid-following inverter
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Grid-following Inverters

Nonlinear Stability Analysis

Motivations

Nonlinear control system ⇒ linear methods not
sufficient

System strength relies on both the grid and
inverter control

PLL causes the majority of instabilities

Objectives

1. A nonlinear method to assess PLL-equipped
systems stability

2. A nonlinear controller to expand PLLs
capabilities
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Grid-following Inverters

Nonlinear Stability Analysis: Methodology

Procedure

1. Derivation of the system model (PLL+ grid)

2. Stability Analysis:

Finding the equilibrium points ((1), (2), and (3))
Determining which equilibrium point is stable
(points (2) and (3))
Evaluating the disturbance tolerance of the
stable equilibrium points, i.e., their domain of
attraction (point (3) is more robust) by utilising
Lyapunov’s Second Theorem

3. We proposed a new system strength index.

4. Also, using feedback linearisation, we proposed a
nonlinear controller to expand PLLs capabilities, i.e.,
its domain attraction.

(1)

(2)

(3)

[1] M. Z. Mansour, S. P. Me, S. Hadavi, B. Badrzadeh, A. Karimi and B. Bahrani, ”Nonlinear Transient Stability Analysis of Phased-Locked Loop-Based Grid-Following
Voltage-Source Converters Using Lyapunov’s Direct Method,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 3, pp. 2699-2709, June 2022.

[2] M. Z. Mansour, M. H. Ravanji, A. Karimi and B. Bahrani, ”Small-Signal Synchronization Stability Enhancement of Grid-Following Inverters via a Feedback Linearization
Controller,” in IEEE Transactions on Power Delivery, vol. 37, no. 5, pp. 4335-4344, Oct. 2022.
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Grid-following Inverters

Output Curve Capability: Impact of PLL Dynamics and Grid Strength

Output Capability Curve (OCC):

defines the permitted active-reactive operating
region for any generating unit in a system,

can be represented by equations (complex
approach),

can graphically illustrate the results of these
derived equations (simple approach).

The OCC is remarkably limited by:

thermal limits,

stability (PLL) limits,

energy resource limits,

voltage limits and

static limits.
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Figure 5: OCC of a typical synchronous generator.
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Grid-following Inverters

Output Curve Capability: Impact of PLL Dynamics and Grid Strength
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Figure 6: OCC of a typical voltage source with only
thermal limit.
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Figure 7: OCC of a typical case.
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Figure 8: OCC when connected to a weaker grid.
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Figure 9: OCC when the PLL is also not tuned.

M.H. Ravanji, W. Zhou, N. Mohammed and B. Bahrani, ”Comparative Analysis of the Power Output Capabilities of Grid-Following and
Grid-Forming Inverters Considering Static, Dynamic, and Thermal Limitations,” Under review.
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Figure 8: OCC when connected to a weaker grid.
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Figure 9: OCC when the PLL is also not tuned.

M.H. Ravanji, W. Zhou, N. Mohammed and B. Bahrani, ”Comparative Analysis of the Power Output Capabilities of Grid-Following and
Grid-Forming Inverters Considering Static, Dynamic, and Thermal Limitations,” Under review.
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Grid-following Inverters

Output Curve Capability: Maximizing the GFLI Transferable Power

In previous slides, it is shown that the OCC can be
significantly limited. These limits are categorised
into two categories:

1. caused by the inverter itself (limits 1-3)

2. caused by the grid (limits 4 and 5)

Suggested solutions for Increasing the GFLI
Maximum Transferable Power

by changing the PLL gains the PLL stability
limit can be pushed rightward in the OCC of a
GFLI

Proposing an auxiliary controller to provide the
optimal Qref for the conventional control.
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Figure 10: The proposed auxiliary controller for maximising the static limit.
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Grid-following Inverters

OCC: Auxiliary controller for maximising the static limit

Experimental results

Considering a weak grid with SCR=1.2

Inverter rated power is 2.2 kW

Tow cases are comapred without and with the auxiliary controller

It can be seen the proposed auxiliary controller increases the IBR maximum transferable power to the grid

Results without the auxiliary controller Results with the auxiliary controller
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Presentation Outline

□ Introduction

□ Grid-following Inverters

□ Grid-forming Inverters

□ Power-Synchronized Grid-following Inverters

□ Synchronous Condenser (SynCon)

□ Project Summary
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Grid-forming Inverters

Introduction

Challenges in inverter-dominant power systems

Reduced inertia and system strength

Reduced fault current

Control interactions and oscillations

Grid-forming inverters

Superior performance of GFMIs in weak grids over
GFLIs.

GFMIs are capable of providing system strength
and inertia to the power system.

GFMIs are capable of operating in grid-connected
(GC) and standalone (SA) modes.

A simplified grid-forming inverter.

Ig∠φ

Vc∠0

Rg Lg

Vg∠δ

Figure 11: Simplified model of a grid-forming inverter.
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Grid-forming Inverters

Generic Control Structure

vdc

Grid

vt,abc

VSC

iabc

vabc

Line Filter

L R

Cig,abc

PWM

vt,abc
*

L R
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Grid-forming Inverters

Generic Control Structure
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Grid-forming Inverters

Control of the Conventional VSG: Dynamic Response

Virtual Synchronous Generator (VSG) Control

VSG

1
Jω0s G(s)

1
Dp

PPref
∆ω

ω0

ω
-

-+ + ++

Figure 12: Virtual Synchronous Generator (VSG) Control

Kvsg(s) =
Dp

(τi s + 1)
,

Dp is the droop coefficient.

τi is set based on the required virtual inertia provision.

Dynamic Response with Virtual Synchronous
Generator (VSG) Control
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1
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Figure 13: VSG performance in grid-connected mode: Effects of SCR when
Xg/Rg = 3.0,

as SCR is decreased, the overshoot and rise
time are increased.
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Grid-forming Inverters

Adaptive VSG: Challenge & Motivation

Challenge

Performance of VSG is strongly related to:
Grid strength SCR
Xg/Rg ratio

In strong grid, the VSG has a poor dynamic response:
Significant oscillations,
Long settling time, and
Large overshoot

Motivation

1. Can we design a fully controllable VSG with fixed dynamic performance:

⇒ settling time?

⇒ overshoot?

⇒ damping ratio?

2. Is it possible to keep the exact control structure of the conventional VSG?
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Grid-forming Inverters

Adaptive VSG: Methodology

1. Consider the power flow equations with RL model of the grid

Ppcc =
3

R2
g + X 2

g

[Rg(V
2
i − ViVjcosθij ) + XgViVj sinθij ], (1)

Qpcc =
3

R2
g + X 2

g

[Xg(V
2
i − ViVjcosθij )− RgViVj sinθij ], (2)

2. Linearize the power flow equations

3. Define the desired performance (e.g., Ts , ζ) for the VSG

4. Estimate the grid impedance (Rg, Xg) in real-time by the VSG
itself by 75 Hz inter-harmonic injection.

Rg
∼= ℜ

[
vres(75 Hz)

ires(75 Hz)

]
, Lg ∼=

1

ω0
ℑ
[
vres(75 Hz)

ires(75 Hz)

]
. (3)

5. Tune of the VSG adaptively: (J, Dp , Kpq , Kiq)

Figure 14: Proposed Adaptive VSG.

N. Mohammed, M. H. Ravanji, W. Zhou and B. Bahrani, ”Online Grid Impedance Estimation-Based Adaptive Control of Virtual Synchronous
Generators Considering Strong and Weak Grid Conditions,” in IEEE Transactions on Sustainable Energy, vol. 14, no. 1, pp. 673-687, Jan. 2023.
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Grid-forming Inverters

Adaptive VSG: Verification in a weak grid with SCR= 2.5
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Figure 15: (left) PCC current of the conventional VSG, (middle) (left) PCC current of the adaptive VSG, (right) PCC power waveforms of the conventional and adaptive VSG.
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Grid-forming Inverters

Adaptive VSG: Verification in a strong grid with SCR=6.74

[4 ms/div]

[2 A/div]
a
i

b
i

c
i

ref
changesP

ref
changesQ

2
t

3
t

[3 s/div]

[4 ms/div]

[2 A/div]
a
i

b
i

c
i

ref
changesP

ref
changesQ

Enable the proposed control
1
t

2
t

3
t

[3 s/div]

Figure 16: (left) PCC current of the conventional VSG, (middle) (left) PCC current of the adaptive VSG, (right) PCC power waveforms of the conventional and adaptive VSG.
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Grid-forming Inverters

Generalized VSG and Compensated Generalized VSG: Methodology

Generalized Virtual Synchronous Generator
Control (GVSG)

GVSG

1
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(as+1)
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1
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∆ω

ω0

ω
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Figure 17: Generalized Virtual Synchronous Generator Control (GVSG)

a, b, and c are controller gains.

The proposed controller does not result in a very high initial
RoCoF.

It allows setting a desired P − ω droop coefficient.

Compensated GVSG Control

Proposed controller with a compensator

Dp

Dpbcs2+(a+Dpc)s+1
G(s)

(as+1)

PPref
∆ω

ω0

ω
-+ + +

Figure 18: Control block diagram of the proposed controller with a damping correction loop.

T

he step response of the GVSG still results in an overshoot.

T

he zero in the closed-loop transfer function results in an undesirable
overshoot.

S

olution: adding a damping correction loop

D. B. Rathnayake, R. Razzaghi, and B. Bahrani, ”Generalized Virtual Synchronous Generator Control Design for Renewable Power Systems,” in IEEE Transactions on

Sustainable Energy, vol. 13, no. 2, pp. 1021-1036, April 2022.
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Figure 18: Control block diagram of the proposed controller with a damping correction loop.

The step response of the GVSG still results in an overshoot.

The zero in the closed-loop transfer function results in an undesirable
overshoot.

Solution: adding a damping correction loop

D. B. Rathnayake, R. Razzaghi, and B. Bahrani, ”Generalized Virtual Synchronous Generator Control Design for Renewable Power Systems,” in IEEE Transactions on

Sustainable Energy, vol. 13, no. 2, pp. 1021-1036, April 2022.
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Grid-forming Inverters

GVSG and CGVSG: Experimental Validation

Strong grid (SCR = 10.6)
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Figure 19: Experimental results for a step change in active power for SCR = 10.6.

Weak grid (SCR = 1.9)
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Figure 20: Experimental results for a step change in active power for a SCR = 1.9.

Excellent performance in strong/weak grids.

CGVSG has the lowest overshoot and settling time.

Grid strength impact on the GVSG and the CGVSG is marginal.
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Grid-forming Inverters

H∞-based Control Design of VSG: Methodology

Challenges in CGVSG control design

Difficult to specify the performance specifications, such as
overshoot and rise time, in the control design stage.

Only simplified parametric models could be used in the control
design.

Cannot design controllers for multiple GFMIs simultaneously.

Controller Structure

APC

x2z
2 + x1z + x0

z2 + y1z + y0
Pref

Pc

∆ω

ωo

ω
-

Figure 21: Control block diagram of the proposed controller.

D. B. Rathnayake, S. P. Me, R. Razzaghi and B. Bahrani, ”H∞-based Control Design for Grid-forming Inverters with Enhanced Damping and
Virtual Inertia,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022.
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Grid-forming Inverters

H∞-based Control Design of VSG: Experimental Validation

Step in Power Reference in Grid-connected Mode.
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Figure 22: Experimental results for the droop, the VSG, and the proposed controller when
a step change in active power is applied in the GC mode: (a) active power output and (b)
frequency.

Load Change in Standalone Mode.
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Figure 23: Experimental results for the droop, the VSG, and the proposed controller when
subjected to a load change in the SA mode: (a) load real power and (b) system frequency.
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Grid-forming Inverters

Multivariable Control Design of VSG: Methodology

Proposed Controller Structure

PlantOMPC
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Figure 24: Small-signal diagram of proposed MIMO control

[
∆θ
∆Vc

]
=

[
KP→θ KQ→θ

KP→Vc KQ→Vc

]
︸ ︷︷ ︸

K

[
∆P
∆Q

]
,

Controller Structure

K =


(x1,11 z + x1,10 )(z + 1)

(z + y1,1
0 )(z − 1)

x1,21 z + x1,20

z + y2,2
0

(x2,11 z + x2,10 )(z + 1)

(z + y1,1
0 )(z − 1)

x2,21 z + x2,20

z + y2,2
0



Loop Shaping-based Multivariable Control Design

A controller similar to VSG control is pursued.

D. B. Rathnayake and B. Bahrani, ”Multivariable Control Design for Grid-Forming Inverters With Decoupled Active and Reactive Power Loops,”
in IEEE Transactions on Power Electronics, vol. 38, no. 2, pp. 1635-1649, Feb. 2023.
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D. B. Rathnayake and B. Bahrani, ”Multivariable Control Design for Grid-Forming Inverters With Decoupled Active and Reactive Power Loops,”
in IEEE Transactions on Power Electronics, vol. 38, no. 2, pp. 1635-1649, Feb. 2023.
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Grid-forming Inverters

Multivariable Control Design of VSG: Experimental Validation

P and Q Decoupling

The decoupling capability of the virtual impedance
method is limited.

The coupling effect of the proposed MIMO is minimal.

The rise-time of the active power is not affected by the
decoupling.
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Figure 25: Experimental results of the VSG, VID, and OMPC with zero steady-state error
Q controller (KZSEQ) during step changes of Pref = 500 W at t = 2 s and

Qref = 250 VAR at t = 5 s: the (a) active power and (b) reactive power.
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Grid-forming Inverters

Multivariable Control Design of VSG: Experimental Validation

Ride-through during ω disturbance
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Figure 26: Experimental results of the VSG and OMPC with zero steady-state error Q
controller (KZSEQ) during a grid-frequency drop of -0.15 Hz at t = 1 s: the (a) active

power, (b) reactive power, (c) frequency deviation generated by the controller, and (d)
d-axis and q-axis PCC voltage reference deviation.
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Figure 27: Experimental results of the VSG and OMPC with zero steady-state error Q
controller (KZSEQ) during a grid voltage sag of -13 V at t = 2 s: the (a) active power,

(b) reactive power, (c) frequency deviation generated by the controller, and (d) d-axis
and q-axis PCC voltage reference deviation.
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Grid-forming Inverters

Multivariable Control Design of VSG: Experimental Validation
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Figure 27: Experimental results of the VSG and OMPC with zero steady-state error Q
controller (KZSEQ) during a grid voltage sag of -13 V at t = 2 s: the (a) active power,

(b) reactive power, (c) frequency deviation generated by the controller, and (d) d-axis
and q-axis PCC voltage reference deviation.
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Grid-forming Inverters

Virtual Resistance for Postfault Oscillation Damping: Background

Challenges

Inverters are vulnerable during faults and fault recoveries.

Poorly-tuned controllers in cascaded loops might lead to
undesired interactions/oscillations.

This is typically more pronounced in weak networks.

Trigger protection devices ⇒ lead to unnecessary
disconnections and instability.

Motivation

Damping mechanism to suppress the oscillations.

Virtual resistance can do the job.

Figure 28: Fault recovery with different SCRs

S. P. Me, S. Zabihi, F. Blaabjerg and B. Bahrani, ”Adaptive Virtual Resistance for Postfault Oscillation Damping in Grid-Forming Inverters,” in
IEEE Transactions on Power Electronics, vol. 37, no. 4, pp. 3813-3824, April 2022, doi: 10.1109/TPEL.2021.
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Grid-forming Inverters

Virtual Resistance for Postfault Oscillation Damping: Fixed-value

Virtual Resistance (VR) is well-known in the literature for oscillation damping.

A small fixed Rv is not sufficient to damp the oscillation in weak grids.

A large fixed Rv requires higher active current.
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Grid-forming Inverters

Virtual Resistance for Postfault Oscillation Damping: Adaptive-value

Need to be adaptive as grid’s topology is dynamic.

Dynamic virtual resistance, only added in the
fault-recovery process.

The measured power, Pm, is passed through a filter
network to form the VR value, Rv.

More VR is used in the early stage of fault recovery.

Less VR is used in the later stage of fault recovery.

The operation of the AVR is governed by a state
machine.

Figure 28: The state machine calculating the adaptive VR (AVR)
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Grid-forming Inverters

Virtual Resistance for Postfault Oscillation Damping: Simulation Results

Without Virtual Resistance

Figure 29: Fault recovery with different SCRs
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Grid-forming Inverters

Virtual Resistance for Postfault Oscillation Damping: Simulation Results (cont.)

Figure 30: Fault recovery with fixed virtual resistance (Sim.).

Figure 31: Fault recovery with adaptive virtual resistance (Sim.).
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Grid-forming Inverters

Virtual Resistance for Postfault Oscillation Damping: Simulation Results (cont.)

Figure 30: Fault recovery with fixed virtual resistance (Sim.).

Figure 31: Fault recovery with adaptive virtual resistance (Sim.).
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Power-Synchronized Grid-Following Inverters

Optimization-based Control (Configuration v1)

Advantages

A PLL-less control strategy

Excellent performance in strong and weak grids

Disadvantages

Offline optimization-based power controller

Controller bandwidth depends on the operating
point of the system

Oscillatory operation under unbalanced grid
voltage
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Figure 32: Power-Synchronized Grid-Following Inverters

B. Bahrani, ”Power-Synchronized Grid-Following Inverter Without a Phase-Locked Loop,” in IEEE Access, vol. 9, pp. 112163-112176, 2021.
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Power-Synchronized Grid-Following Inverters

Optimization-based Control (Configuration v1): Experimental Validation

In a strong grid with SCR= 6.4

Normal Grid UnbalancedVoltage Sag After Phase Jump

In a weak grid with SCR= 0.9

Normal Grid UnbalancedVoltage Sag After Phase Jump
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Power-Synchronized Grid-Following Inverters

Linear Parameter-Varying Control (Configuration v2)

Advantages

A PLL-less control strategy

Excellent performance in strong and weak grids

Real-time tuning of the power controller

Disadvantages

Unstable operation under large Frequency
deviations

Oscillatory operation under unbalanced grid
voltage
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Figure 33: Linear Parameter-Varying Control PSGFLIs

M. Zarif Mansour, M. H. Ravanji, A. Karimi and B. Bahrani, ”Linear Parameter-Varying Control of a Power-Synchronized Grid-Following
Inverter,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 2, pp. 2547-2558, April 2022.
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Power-Synchronized Grid-Following Inverters

Enhanced Frequency Control (Configuration v3)

Advantages

A PLL-less control strategy

Excellent performance in strong and weak grids

Real-time tuning of the power controller

Stable operation even under large grid
frequency deviations

Disadvantages

Oscillatory operation under unbalanced grid
voltage
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Figure 34: Enhanced Frequency control for PSGFLIs

N. Mohammed, M. H. Ravanji, W. Zhou and B. Bahrani, ”Enhanced Frequency Control for Power-Synchronized Grid-Following PLL-less
Inverters,” Under review.
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Power-Synchronized Grid-Following Inverters

Enhanced Frequency Control (Configuration v3): Experimental Validation

In a strong grid with SCR= 7.4

In a weak grid with SCR= 1.38
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Power-Synchronized Grid-Following Inverters

Enhanced Frequency Control (Configuration v3): Experimental Validation

In a strong grid with SCR= 7.4 In a weak grid with SCR= 1.38
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Power-Synchronized Grid-Following Inverters

Double-Synchronous Control (Configuration v4)

Advantages

A PLL-less control strategy

Excellent performance in strong and weak grids

Real-time tuning of the power controller

Stable operation even under large grid
frequency deviations

Free-of-oscillation under unbalanced grid
voltage
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Figure 35: Double-Synchronous-Reference-Frame-Based for PSGFLIs

N. Mohammed, W. Zhou and B. Bahrani, ”Double-Synchronous-Reference-Frame-Based Power-Synchronized PLL-Less Grid-Following Inverters
for Unbalanced Grid Faults,” Under review.
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Synchronous Condenser (SynCon)

Introduction

Synchronous Condensers (SynCons) are synchronous machines without a prime mover.

Advantages

Contribution of short-circuit power

Voltage support (exciter)

Providing inertia

Drawbacks

Installation/operation costs

Lead-time

Figure 36: https://new.siemens.com/
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Synchronous Condenser (SynCon)

Optimal Allocation and Sizing

Procedure

An objective function based on operational costs
and voltage deviation is formulated.

A meta-heuristic algorithm, such as GA, is used in
one study.

A convex optimisation approach is used in another
study.

Figure 37: Flowchart of existing optimization procedures

S. Hadavi, M. Z. Mansour and B. Bahrani, ”Optimal Allocation and Sizing of Synchronous Condensers in Weak Grids With Increased Penetration
of Wind and Solar Farms,” in IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 11, no. 1, pp. 199-209, March 2021.

S. Hadavi, J. Saunderson, A. Mehrizi-Sani and B. Bahrani, ”A Planning Method for Synchronous Condensers in Weak Grids Using Semi-Definite
Optimization,” in IEEE Transactions on Power Systems, vol. 38, no. 2, pp. 1632-1641, March 2023, doi: 10.1109/TPWRS.2022.3174922.
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Synchronous Condenser (SynCon)

Optimal Allocation and Sizing: Fault Ride Through Test

Fault Ride Through (FRT) Test without SynCons
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Figure 38: Fault Ride Through (FRT) Test without SynCons
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Synchronous Condenser (SynCon)

Optimal Allocation and Sizing: Fault Ride Through Test

Fault Ride Through (FRT) Test with optimal SynCons

FRT Test at Bus 29 FRT Test at Bus 32 FRT Test at Bus 38
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Figure 39: FRT test results with meta-heuristic approach
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Synchronous Condenser (SynCon)

Optimal Allocation and Sizing: Fault Ride Through Test

Fault Ride Through (FRT) Test with optimal SynCons

FRT Test at Bus 29 FRT Test at Bus 32 FRT Test at Bus 38
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Figure 39: FRT test results with convex approach
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Synchronous Condenser (SynCon)

A Data-Driven SynCon Exciter Control: Methodology

Exciter
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   Machine 
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Figure 40: Block diagram of excitation control system

Particularly in weak grids, the exciter type and its
tuning influence:

response time,

interaction with nearby farms,

SSO in power systems.

Solutions

a robust exciter controller, designed based on the
system’s frequency-domain model

Considering system’s model for different SCR and
X/R ratios,

S. Hadavi, D. B. Rathnayake, G. Jayasinghe, A. Mehrizi-Sani and B. Bahrani, ”A Robust Exciter Controller Design for Synchronous Condensers
in Weak Grids,” in IEEE Transactions on Power Systems, vol. 37, no. 3, pp. 1857-1867, May 2022.
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Synchronous Condenser (SynCon)

A Data-Driven SynCon Exciter Control: Methodology
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Figure 40: Block diagram of excitation control system

Particularly in weak grids, the exciter type and its
tuning influence:

response time,

interaction with nearby farms,

SSO in power systems.

Solutions

a robust exciter controller, designed based on the
system’s frequency-domain model

Considering system’s model for different SCR and
X/R ratios,

S. Hadavi, D. B. Rathnayake, G. Jayasinghe, A. Mehrizi-Sani and B. Bahrani, ”A Robust Exciter Controller Design for Synchronous Condensers
in Weak Grids,” in IEEE Transactions on Power Systems, vol. 37, no. 3, pp. 1857-1867, May 2022.
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Synchronous Condenser (SynCon)

A Data-Driven SynCon Exciter Control: Large Disturbance Tests

73 5 92 4 6

1

0.5

0P
O

C
 V

ol
ta

ge
 (

pu
)

8

(a)

Designed Controller
Default AC1A

73 5 92 4 6

200

-200

0

400

P
O

C
 A

ct
iv

e 
P

ow
er

 (
M

W
)

8

Designed Controller
Default AC1A

(b)

73 5 92 4 6

500

0

250

750

P
O

C
 R

ec
ti
ve

 P
ow

er
 (

M
V

ar
)

8

(c)
Designed Controller
Default AC1A

73 5 92 4 6

316

312

314

Sy
nC

on
 S

pe
ed

 (
ra

d/
s)

8
Time (s)

(d)

Designed Controller
Default AC1A

Simulation results when the FRT test is applied at PoC at t=3 s with a duration of 430 ms with the optimal designed exciter

control and AC1A exciter
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Project Summary

For grid-following inverters (GFLIs), an index to determine the stability margin is proposed.

A modified PLL is proposed for GFLIs that expands the stability margin of the system considerably.

A new breed of grid-following inverters based on power synchronisation is proposed.

A number of control strategies for grid-forming inverters (GFMIs) are proposed.

Output capability curves for grid-forming and grid-following inverters are determined.

Two allocation techniques and an exciter control design for SynCons are also proposed.
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Thank you for your attention!

Q/A
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