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Introduction Projected System Strength in the NEM Research Laboratory [PEARL]

System strength determines how a power system can securely
and reliably operate upon various contingencies.
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Figure 1: 2018-19
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System strength determines how a power system can securely NG

and reliably operate upon various contingencies.

With the current trend, in 2028-29, according to Australian
Energy Market Operator (AEMO)’s Integrated System Plan
(ISP), more points in the NEM will have low system strength.

Figure 2: 2028-29
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System strength determines how a power system can securely
and reliably operate upon various contingencies.

With the current trend, in 2028-29, according to Australian
Energy Market Operator (AEMO)’s Integrated System Plan
(ISP), more points in the NEM will have low system strength. In
2038-39, the situation can be catastrophic.

Figure 3: 2038-39
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As identified by TB-671-2016-B4-62 CIGRE Working Group Report, integration of renewable energy farms into networks with
low system strength can cause:

@ control interactions and instability,

@ failure to ride-through disturbances and faults,
@ electromechanical oscillatory stability,

@ islanding issues,

@ sub-synchronous oscillatory behavior,

@ inability of farms to inject their maximum power.

Dr. Behrooz Bahrani, Director of Grid Innovation Hub April 19, 2023
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Project Aims:
@ classify/describe stability issues likely to happen in weak grids,
@ identify grid properties/value-range/scenarios under which above issues are likely to be encountered,

@ propose innovative allocation, sizing, and control strategies for grid-strengthening assets such as SynCons and
grid-forming inverters,

@ enhance the industry understanding of the interaction of farms with other assets in the network such as grid-forming
inverters and SynCons.
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Project Aims:
@ classify/describe stability issues likely to happen in weak grids,
@ identify grid properties/value-range/scenarios under which above issues are likely to be encountered,

@ propose innovative allocation, sizing, and control strategies for grid-strengthening assets such as SynCons and
grid-forming inverters,

@ enhance the industry understanding of the interaction of farms with other assets in the network such as grid-forming
inverters and SynCons.

Project Outcomes:
@ increased penetration of solar/wind farms unlocking future investments,
@ maximised generation capacity of existing farms located in weak networks,

@ increased reliability /security of the grid as the renewable energy penetration grows.
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Project Aims:
@ classify/describe stability issues likely to happen in weak grids,
@ identify grid properties/value-range/scenarios under which above issues are likely to be encountered,

@ propose innovative allocation, sizing, and control strategies for grid-strengthening assets such as SynCons and
grid-forming inverters,

@ enhance the industry understanding of the interaction of farms with other assets in the network such as grid-forming
inverters and SynCons.

Project Outcomes:
@ increased penetration of solar/wind farms unlocking future investments,
@ maximised generation capacity of existing farms located in weak networks,

@ increased reliability /security of the grid as the renewable energy penetration grows.

Project Budget:

The project duration was two and a half years and started in July 2020, and the studies were primarily done at Monash
University. The total budget was $1.36M, and the funding requested from ARENA is $559k (41%). Monash Grid Innovation
Hub provided $100k as cash contribution. The combined in-kind contribution of all partners were $708k.
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Project Tasks

Taskl - Grid Classification & Test-Bed

[l Weak Grid Classification

Quantification of Stability Conditions for
Wind/Solar Farms

[l Test-bed Development based on
Northwestern Victorian Grid

Behrooz Bahra

Task2 - Grid-Strengthening Solutions

[ Synchronous Condensers: Allocation and
Sizing
[} Grid Forming Inverters: Control,

Allocation, Sizing, and Black-start
Capability

Research Laboratory [PEARL]

Task3 - Internal Controllers & Interactions

[l Farm Voltage Control for Damping
Northwestern Victoria Oscillations

[l Farm Synchronisation with Weak Grids

Interaction of Wind/Solar Farms, SynCons
and Grid Forming Inverters
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Research Areas of the Project:
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Grid
Following
Inverters

(GFLIs)

!

Nonlinear Transient Stability
Analysis of GFLIs
Small-Signal
Synchronization Stability
Enhancement of GFLIs
Output Power Capability of
GFLIs

Modeling, Analysis, Stability
Enhancement, and
Impedance Measurement of
GFLIs

Grid Forming
Inverters
(GFMIs)

!

Generalized VSG for GFMIs
H,,-based Control for GFMIs
Multivariable Control for
GFMIs

Grid-Forming Capabilities
for Wind Farms

Adaptive Control for VSGs
Virtual Resistance for Post-
fault Oscillation Damping of
GFMIs

Director of Grid Innovation Hub

Power-
Synchronised
Grid Following

Inverters
(PSGFLIs)

1

. Optimzation-based PSGFLIs

« Linear-Parameter Varying
control (LPV-PSGFLI)

. Impedance-based Stability
Analysis and Transient
Stability Analysis of LPV-
PSGFLIs

. Enhanced frequency control
(ePSGFLI)

. Double synchronous
reference frame control (DS-
PSGFLI)

Synchronous
Condensers
(SynCons)

!

. Optimal Allocation and
Sizing of SynCons

« A Data-Driven SynCon
Exciter Controller Design

« Quantifying Stability in
Inverter-based Weak Grids
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T T T
@ the most comm.on type of inverters in power f U, e Lt Rp Ypee Ly Ry Y,
systems worldwide %L JL{} H—-= @—0—%@—0—@
(2

@ Simple structure

@ Well-established control technique Gating | Signals
@ Good performance in strong grids

@ Stable under various disturbances (frequency
deviations)

Simplified model of a grid-following inverter
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Advantages VSC RL Filte: Trafo Utility Grid
I il I
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@ the most common type of inverters in power f
Vde

' Vave Lf R Upce Li Ri Yy
systems worldwide L JL{} 4—/%@—@—0—%:)—0—@
(2

@ Simple structure

@ Well-established control technique Gating | Signals
@ Good performance in strong grids

@ Stable under various disturbances (frequency
deviations)

e Disadvantages

@ Poor performance in weak grids

Simplified model of a grid-following inverter

o Small signal instability issues (e.g., PLL).

@ needs an external grid = Low system strength
=> failed synchronization

Dr. Behrooz Bahran
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Motivations

VSC | RLTFiltey Trafo |  Utility Grid
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@ Nonlinear control system = linear methods not |
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@ System strength relies on both the grid and L JG .

inverter control

@ PLL causes the majority of instabilities
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Motivations

VSC | RLTFiltey Trafo |  Utility Grid
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@ Nonlinear control system = linear methods not

sufficient f Y e Lt Ry Vpoe L Ry Y
Ve H e —(O——mw-= (: )
@ System strength relies on both the grid and L JG

inverter control bec

@ PLL causes the majority of instabilities

iPCC,d Z
Bl v
. . t.dq | Controller
Objectives i
PCC.dg.ref

1. A nonlinear method to assess PLL-equipped
systems stability

2. A nonlinear controller to expand PLLs
capabilities

Dr. Behrooz Bahrani, Director of Grid Innovation Hub April 19, 2023



Grid-following Inverters University

Power Engineering Advanced

Nonlinear Stability Analysis: Methodology Research Laboratory [PEARL]

Procedure
1. Derivation of the system model (PLL+ grid)
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Nonlinear Stability Analysis: Methodology

Procedure
1. Derivation of the system model (PLL+ grid)
2. Stability Analysis:

e Finding the equilibrium points ((1), (2), and (3))

o Determining which equilibrium point is stable
(points (2) and (3))

o Evaluating the disturbance tolerance of the
stable equilibrium points, i.e., their domain of
attraction (point (3) is more robust) by utilising
Lyapunov’s Second Theorem

Dr. Behrooz Bahrani, Director of Grid Innovation Hub
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Procedure -
1. Derivation of the system model (PLL+ grid) @
2. Stability Analysis:
e Finding the equilibrium points ((1), (2), and (3))
o Determining which equilibrium point is stable @)
(points (2) and (3))
o Evaluating the disturbance tolerance of the
stable equilibrium points, i.e., their domain of @
attraction (point (3) is more robust) by utilising
Lyapunov’s Second Theorem

3. We proposed a new system strength index.
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Procedure -
1. Derivation of the system model (PLL+ grid) 0
2. Stability Analysis:
e Finding the equilibrium points ((1), (2), and (3))
o Determining which equilibrium point is stable @
(points (2) and (3))
o Evaluating the disturbance tolerance of the
stable equilibrium points, i.e., their domain of
attraction (point (3) is more robust) by utilising
Lyapunov’s Second Theorem

3)

3. We proposed a new system strength index.

4. Also, using feedback linearisation, we proposed a
nonlinear controller to expand PLLs capabilities, i.e.,
its domain attraction.
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Procedure -
1. Derivation of the system model (PLL+ grid) 0
2. Stability Analysis:

e Finding the equilibrium points ((1), (2), and (3))

o Determining which equilibrium point is stable @
(points (2) and (3))

o Evaluating the disturbance tolerance of the
stable equilibrium points, i.e., their domain of
attraction (point (3) is more robust) by utilising
Lyapunov’s Second Theorem

We proposed a new system strength index.

Also, using feedback linearisation, we proposed a
nonlinear controller to expand PLLs capabilities, i.e.,
its domain attraction.

[1] M. Z. Mansour, S. P. Me, S. Hadavi, B. Badrzadeh, A. Karimi and B. Bahrani, " Nonlinear Transient Stability Analysis of Phased-Locked Loop-Based Grid-Following
Voltage-Source Converters Using Lyapunov's Direct Method,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 3, pp. 2699-2709, June 2022.

[2] M. Z. Mansour, M. H. Ravanji, A. Karimi and B. Bahrani, " Small-Signal Synchronization Stability Enhancement of Grid-Following Inverters via a Feedback Linearization
Controller,” in IEEE Transactions on Power Delivery, vol. 37, no. 5, pp. 4335-4344, Oct. 2022.
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Output Curve Capability: Impact of PLL Dynamics and Grid Strength Research Laboratory [PEARL]

Output Capability Curve (OCC):

@ defines the permitted active-reactive operating
region for any generating unit in a system, AQ

--Core End Heat Limit
Field Current Limit
== Armature Current Limit

@ can be represented by equations (complex i \\\
approach), g\
. . ,'4
@ can graphically illustrate the results of these g

derived equations (simple approach). “lS;nom \

Figure 5: OCC of a typical synchronous generator.
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Output Capability Curve (OCC):

@ defines the permitted active-reactive operating
region for any generating unit in a system, AQ

--Core End Heat Limit
Field Current Limit
== Armature Current Limit

@ can be represented by equations (complex i \\\
approach), g\
. . ,'4
@ can graphically illustrate the results of these g

derived equations (simple approach). “lS;nom \

The OCC is remarkably limited by:
@ thermal limits,
e stability (PLL) limits,

@ energy resource limits, -

@ voltage limits and

o static limits. Figure 5: OCC of a typical synchronous generator.

Dr. Behrooz Bahrani, Director of Grid Innovation Hub
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Output Curve Capability: Impact of PLL Dynamics and Grid Strength Research Laboratory [PEARL]
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Figure 6: OCC of a typical voltage source with only
thermal limit.

M.H. Ravanji, W. Zhou, N. Mohammed and B. Bahrani, " Comparative Analysis of the Power Output Capabilities of Grid-Following and
Grid-Forming Inverters Considering Static namic, and Thermal Limitations,” Under review.
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Figure 6: OCC of a typical voltage source with only . .
thermal limit. Figure 7: OCC of a typical case.

M.H. Ravanji, W. Zhou, N. Mohammed and B. Bahrani, " Comparative Analysis of the Power Output Capabilities of Grid-Following and
Grid-Forming Inverters Considering Static, Dynamic, and Thermal Limitations,” Under review.
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Figure 6: OCC of a typical voltage source with only . . . .
thermal limit. Figure 7: OCC of a typical case. Figure 8: OCC when connected to a weaker grid.

M.H. Ravanji, W. Zhou, N. Mohammed and B. Bahrani, " Comparative Analysis of the Power Output Capabilities of Grid-Following and
Grid-Forming Inverters Considering Static, Dynamic, and Thermal Limitations,” Under review.
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Figure 6: OCC of a typical voltage source with only . . . . . .
Figure 7: OCC of a typical case. Figure 8: OCC when connected to a weaker grid.  Figure 9: OCC when the PLL is also not tuned.

thermal limit.

M.H. Ravanji, W. Zhou, N. Mohammed and B. Bahrani, " Comparative Analysis of the Power Output Capabilities of Grid-Following and
Grid-Forming Inverters Considering Static, Dynamic, and Thermal Limitations,” Under review.
Dr. Behrooz Bahrani, Director of Grid Innova
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Output Curve Capability: Maximizing the GFLI Transferable Power Research Laboratory [PEARL]

In previous slides, it is shown that the OCC can be
significantly limited. These limits are categorised
into two categories:

1. caused by the inverter itself (limits 1-3)
2. caused by the grid (limits 4 and 5)

M.H. Ravanji, W. Zhou, N. Mohammed and B. Bahrani, " Comparative Analysis of the Power Output Capabilities of Grid-Following and
Grid-Forming Inverters Considering Static, Dynamic, and Thermal Limitations,” Under review in IEEE Transactions on Power Systems.
Dr. Behrooz Bahrani, Director of G Innovation Hub April 19, 2023
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In previous slides, it is shown that the OCC can be

significantly limited. These limits are categorised

into two categories:

Inverter
Power
Control

1. caused by the inverter itself (limits 1-3)
2. caused by the grid (limits 4 and 5)

Current
Control

Figure 10: The proposed auxiliary controller for maximising the static limit.
Suggested solutions for Increasing the GFLI
Maximum Transferable Power

o by changing the PLL gains the PLL stability
limit can be pushed rightward in the OCC of a
GFLI

@ Proposing an auxiliary controller to provide the
optimal Q¢ for the conventional control.

M.H. Ravanji, W. Zhou, N. Mohammed and B. Bahrani, " Comparative Analysis of the Power Output Capabilities of Grid-Following and
Grid-Forming Inverters Considering Static, Dynamic, and Thermal Limitations,” Under review in IEEE Transactions on Power Systems.
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Experimental results
@ Considering a weak grid with SCR=1.2
@ Inverter rated power is 2.2 kW
@ Tow cases are comapred without and with the auxiliary controller

@ It can be seen the proposed auxiliary controller increases the IBR maximum transferable power to the grid

3 3
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Z z
=2 =
= =
< <
E =
=z =
m &

0 5 10 15 20 25
Time [s]

Results without the auxiliary controller Results with the auxiliary controller

Dr. Behrooz Bahrani, Director of Grid Innovation Hub April 19, 2023
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A simplified grid-forming inverter.
Challenges in inverter-dominant power systems

@ Reduced inertia and system strength
@ Reduced fault current

e Control interactions and oscillations LZ¢ Ry Ly

Figure 11: Simplified model of a grid-forming inverter.

Dr. Behrooz Bahrani, Director of Grid Innovation Hub April 19, 2023
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Challenges in inverter-dominant power systems

@ Reduced inertia and system strength
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@ Superior performance of GFMlIs in weak grids over
GFLls.

Figure 11: Simplified model of a grid-forming inverter.
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Challenges in inverter-dominant power systems

@ Reduced inertia and system strength

@ Reduced fault current

@ Control interactions and oscillations L2 R L,
Grid-forming inverters V.20 V26

@ Superior performance of GFMlIs in weak grids over
GFLls.

o GFMls are capable of providing system strength
and inertia to the power system.

Figure 11: Simplified model of a grid-forming inverter.
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A simplified grid-forming inverter.
Challenges in inverter-dominant power systems

@ Reduced inertia and system strength

@ Reduced fault current

@ Control interactions and oscillations L2 R L,
Grid-forming inverters V.20 V26

@ Superior performance of GFMlIs in weak grids over
GFLls.

o GFMls are capable of providing system strength
and inertia to the power system.

Figure 11: Simplified model of a grid-forming inverter.

o GFMls are capable of operating in grid-connected
(GC) and standalone (SA) modes.

Dr. Behrooz Bahrani, Director of Grid Innovation Hub
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I ref
G vef
Vabe

Labe

Inverter
Current
Control

Vt,abe




N MONASH
University

Grid-forming Inverters

Power Engineering Advanced

Generic Control Structure Research Laboratory [PEARL]

Grid | Line Filter | VSC

Ut,abe

} J Ude

| oo

T SN Ut
Ug,ref Capacitor g ref Inverter Ut,abe
Vabe Voltage vape | Current
. Control . Control
lg abe tabe
gabe _ fabe_|

Dr. Behrooz Bahrani, Director of Innovation Hub




N MONASH
University

Grid-forming Inverters

Power Engineering Advanced

Generic Control Structure Research Laboratory [PEARL]

Grid | Line Filter | VSC

Ut,abe

} J Ude

| oo

P Vg ref id‘mf
I SN .
_ % | Primary Vgref Capacitor Tgref Inverter Ut,abe
Py Control Vabe Voltage Vabe Current
Level i Control ) Control
Q g abe fabe
— — —>

Dr. Behrooz Bahrani, Director of Innovation Hub




N MONASH
University

Grid-forming Inverters

Power Engineering Advanced

Generic Control Structure Research Laboratory [PEARL]

Grid | Line Filter | VSC

Ut,abe

} J Ude

| oo

Vg ref i vof
) .
& Primary Vgref Capacitor Tgref Inverter Ut,abe
Power -

iape |Calculator Py Control Vabe Voltage Vabe Cirei

— Level i Control ] Control
Q g abe fabe
—= B —

Dr. Behrooz Bahrani, Director of Innovation Hub




Grid-forming Inverters

University

Power Engineering Advanced

Control of the Conventional VSG: Dynamic Response Research Laboratory [PEARL]

Virtual Synchronous Generator (VSG) Control

Figure 12: Virtual Synchronous Generator (VSG) Control

D
Kvs - 7137
)= st D)

@ Dy, is the droop coefficient.

@ 7, is set based on the required virtual inertia provision.

Dr. Behrooz Bahrani, Director of Grid Innovation Hub April 19, 2023
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Virtual Synchronous Generator (VSG) Control Dynamic Response with Virtual Synchronous
Generator (VSG) Control

6
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Figure 12: Virtual Synchronous Generator (VSG) Control 2 ~Poec@ X/ R, = 3.0, SCR = 3.0
. FPyec@ X,/R, = 3.0, SCR = 1.2
Kosg(s) = Dp 0 10 20 30 40
vsg - 7 1\ i se
(T,'S + 1) Time (sec)
° Dp is the dl’OOp coefficient. ;iguve 13:7VSG performance in grid-connected mode: Effects of SCR when
o /Rg = 30,

@ 7, is set based on the required virtual inertia provision.

@ as SCR is decreased, the overshoot and rise
time are increased.

Dr. Behrooz Bahrani, Director of Grid Innovation Hub April 19, 2023
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Challenge
@ Performance of VSG is strongly related to:

o Grid strength SCR
e Xz /R ratio

Dr. Behrooz Bahrani, Director of Grid Innovation Hub April 19, 2023
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Adaptive VSG: Challenge & Motivation Research Laboratory [PEARL]

Challenge
@ Performance of VSG is strongly related to:
o Grid strength SCR
e Xz /R ratio
@ In strong grid, the VSG has a poor dynamic response:

e Significant oscillations,
o Long settling time, and
o Large overshoot

Dr. Behrooz Bahrani, Director of Grid Innovation Hub April 19, 2023
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Adaptive VSG: Challenge & Motivation Research Laboratory [PEARL]

Challenge
@ Performance of VSG is strongly related to:
o Grid strength SCR
e Xz /R ratio
@ In strong grid, the VSG has a poor dynamic response:

e Significant oscillations,
o Long settling time, and
o Large overshoot

Motivation
1. Can we design a fully controllable VSG with fixed dynamic performance:
= settling time?
= overshoot?
= damping ratio?

2. Is it possible to keep the exact control structure of the conventional VSG?

Dr. Behrooz Bahrani, Director of Grid Innovation Hub
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Figure 14: Proposed Adaptive VSG.

N. Mohammed, M. H. Ravanji, W. Zhou and B. Bahrani, "Online Grid Impedance Estimation-Based Adaptive Control of Virtual Synchronous
Strong and Weak Grid Conditions,” in IEEE Transactions on Sustainable Energy, vol. 14, no. 1, pp. 673-687, Jan. 2023.
Behrooz Bahra irector of Grid Innovation Hub
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Adaptive VSG: Methodology

1. Consider the power flow equations with RL model of the grid

3 .

Ppee = m[f?g(‘/;2 — ViVjeosty) + Xg V; Vjsindj],
-3 X, (V? — V;Vicost Ry V;V;sinf

Qpce = m[ 5 (V7 — ViVjcostj) — Rg Vi Vjsinbj],

2. Linearize the power flow equations
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Figure 14: Proposed Adaptive VSG.

N. Mohammed, M. H. Ravanji, W. Zhou and B. Bahrani, "Online Grid Impedance Estimation-Based Adaptive Control of Virtual Synchronous
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1. Consider the power flow equations with RL model of the grid

VSI
3 ’ ) i Jlf?
Ppee = W[Rg(vi — ViVjcostly) + Xg V; Vjsin;], (1)
3 .
Qpce = W[Xg(\/i2 — ViVjcoshjj) — Ry Vi Vjsinb;], (2)

2. Linearize the power flow equations
| voltage &

3. Define the desired performance (e.g., Ts , ¢) for the VSG Yoy = -

ontroller

Power calculation

Reference generator

Enable —|Proposed |»i |
o, .. | control
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Figure 14: Proposed Adaptive VSG.

N. Mohammed, M. H. Ravanji, W. Zhou and B. Bahrani, "Online Grid Impedance Estimation-Based Adaptive Control of Virtual Synchronous
Generators Considering Strong and Weak Grid Conditions,” in IEEE Transactions on Sustainable Energy, vol. 14, no. 1, pp. 673-687, Jan. 2023.
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VSI
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1. Consider the power flow equations with RL model of the grid

3 .
Ppec = W[Rg(v'? — V;VjcosOjj) + Xg Vi Vjsinbj], (1)
3 2 .
Qpec = W[Xg(\/, — ViVjcoshjj) — Ry Vi Vjsinb;], (2)
Linearize the power flow equations Tnner g Eé
voltage & g E
Define the desired performance (e.g., Ts , ¢) for the VSG s curent e g
Estimate the grid impedance (R, Xg) in real-time by the VSG E &

Enable = Proposed
control

itself by 75 Hz inter-harmonic injection.
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Figure 14: Proposed Adaptive VSG.

5. Tune of the VSG adaptively: (J, Dp, Kpq, Kig)

N. Mohammed, M. H. Ravanji, W. Zhou and B. Bahrani, "Online Grid Impedance Estimation-Based Adaptive Control of Virtual Synchronous
Generators Considering Strong and Weak Grid Conditions,” in IEEE Transactions on Sustainable Energy, vol. 14, no. 1, pp. 673-687, Jan. 2023.

Dr. Behrooz Bahrar Innovation Hub April 19, 2023
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Adaptive VSG: Verification in a weak grid with SCR= 2.5 Research Laboratory [PEARL]

Figure 15: (left) PCC current of the conventional VSG, (middle) (left) PCC current of the adaptive VSG, (right) PCC power waveforms of the conventional and adaptive VSG.

Dr. Behrooz Bahran




Grid-forming Inverters University

Power Engineering Advanced

Adaptive VSG: Verification in a weak grid with SCR= 2.5 Research Laboratory [PEARL]
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Figure 15: (left) PCC current of the conventional VSG, (middle) (left) PCC current of the adaptive VSG, (right) PCC power waveforms of the conventional and adaptive VSG.
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Grid-forming Inverters

Adaptive VSG: Verification in a weak grid with SCR= 2.5 Resarch Laborsery [PEA

Research Laboratory [PEARL]

1 control |

—Fref
—Poe, VSG
1 = Ppces AVSG (\
4 s/div] —Qrer Al
- —Qpee: VSG ]
$[2 A/div] Qpec, AVSG / ”
‘ el
0.1
+ 0
/ 10102
|y
0 5 10 15 20 25

Time (sec)

Figure 15: (left) PCC current of the conventional VSG, (middle) (left) PCC current of the adaptive VSG, (right) PCC power waveforms of the conventional and adaptive VSG.
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Figure 16: (left) PCC current of the conventional VSG, (middle) (left) PCC current of the adaptive VSG, (right) PCC power waveforms of the conventional and adaptive VSG.
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Generalized Virtual Synchronous Generator
Control (GVSG)

A

R .

Figure 17: Generalized Virtual Synchronous Generator Control (GVSG)

@ a, b, and c are controller gains.

@ The proposed controller does not result in a very high initial
RoCoF.

@ It allows setting a desired P — w droop coefficient.

D. B. Rathnayake, R. Razzaghi, and B. Bahrani, " Generalized Virtual Synchronous Generator Control Design for Renewable Power Systems,” in IEEE Transactions on
Sustainable Energy, vol. 13, no. 2, pp. 1021-1036, April 2022.
Dr. Behrooz Bahrani, Director of Grid Innovation Hub
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Figure 17: Generalized Virtual Synchronous Generator Control (GVSG)

@ a, b, and c are controller gains.

@ The proposed controller does not result in a very high initial
RoCoF.

@ It allows setting a desired P — w droop coefficient.

Compensated GVSG Control
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Figure 18: Control block diagram of the proposed controller with a damping correction loop.

@ The step response of the GVSG still results in an overshoot.

@ The zero in the closed-loop transfer function results in an undesirable

overshoot.

@ Solution: adding a damping correction loop

D. B. Rathnayake, R. Razzaghi, and B. Bahrani, " Generalized Virtual Synchronous Generator Control Design for Renewable Power Systems,” in IEEE Transactions on
Sustainable Energy, vol. 13, no. 2, pp. 1021-1036, April 2022.
Director of Grid Innovation Hub

Dr. Behrooz Bahrani
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Strong grid (SCR = 10.6) Weak grid (SCR = 1.9)
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Figure 19: Experimental results for a step change in active power for SCR = 10.6. Figure 20: Experimental results for a step change in active power for a SCR = 1.9.

@ Excellent performance in strong/weak grids.
@ CGVSG has the lowest overshoot and settling time.

@ Grid strength impact on the GVSG and the CGVSG is marginal.

Dr. Behrooz Bahrani, Director of Grid Innovation Hub April 19, 2023
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Challenges in CGVSG control design

o Difficult to specify the performance specifications, such as
overshoot and rise time, in the control design stage.

@ Only simplified parametric models could be used in the control
design.

@ Cannot design controllers for multiple GFMlIs simultaneously.

D. B. Rathnayake, S. P. Me, R. Razzaghi and B. Bahrani, "Hoo-based Control Design for Grid-forming Inverters with Enhanced Damping and
Virtual Inertia,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022.

Dr. Behrooz Bahr. irector of Grid Innovation Hub
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Challenges in CGVSG control desi
alienges in contro estgn Controller Structure

o Difficult to specify the performance specifications, such as P
[

overshoot and rise time, in the control design stage. e ,
‘é | @o2® + 212+ 30| AW é w
i Pref

@ Only simplified parametric models could be used in the control | 224+ yiz+ o
design. ‘

) . . Figure 21: Control block diagram of the proposed controller.
@ Cannot design controllers for multiple GFMlIs simultaneously.

D. B. Rathnayake, S. P. Me, R. Razzaghi and B. Bahrani, "Hoo-based Control Design for Grid-forming Inverters with Enhanced Damping and
Virtual Inertia,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022.

Dr. Behrooz Bahrani, Director of Innovation Hub
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Step in Power Reference in Grid-connected Mode.
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Figure 22: Experimental results for the droop, the VSG, and the proposed controller when
a step change in active power is applied in the GC mode: (a) active power output and (b)
frequency.

Behrooz Bahrani, Director of Grid Innovation Hub
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Step in Power Reference in Grid-connected Mode. Load Change in Standalone Mode.
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Figure 22: Exp_erlme_ntal resu|t§ for tl?e d.roop, the VSG, and the _Proposed controller when Figure 23: Experimental results for the droop, the VSG, and the proposed controller when
? step change in active power is applied in the GC mode: (a) active power output and (b) subjected to a load change in the SA mode: (a) load real power and (b) system frequency.
requency.

Dr. Behrooz Bahrani, Director of Grid Innovation Hub




Y MONASH
” University
Power Engineering Advanced

Multivariable CO i . Research Laboratory [PEARL]

Grid-forming Inverters

Figure 24: Small-signal diagram of proposed MIMO control
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D. B. Rathnayake and B. Bahrani, " Multivariable Control Design for Grid-Forming Inverters With Decoupled Active and Reactive Power Loops,”
in IEEE Transactions on Power Electronics, vol. 38, no. 2, pp. 1635-1649, Feb. 2023.

Dr. Behrooz Bahran April 19, 2023
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Proposed Controller Structure

Controller Structure
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Figure 24: Small-signal diagram of proposed MIMO control

@ Loop Shaping-based Multivariable Control Design

[AO} . |:Kp_>g KQ_W} {AP}
AVc Kpov. Koov| [AQ]” @ A controller similar to VSG control is pursued.

K

D. B. Rathnayake and B. Bahrani, " Multivariable Control Design for Grid-Forming Inverters With Decoupled Active and Reactive Power Loops,”
in IEEE Transactions on Power Electronics, vol. 38, no. 2, pp. 1635-1649, Feb. 2023.
Dr. Behrooz Bahrani, Director of Innovation Hub
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Experimental Validation

Multivariable Control Design of VSG:

P and Q Decoupling
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Figure 25: Experimental results of the VSG, VID, and OMPC with zero steady-state error
Q controller (KZSEQ) during step changes of P,.o¢ = 500 W at t = 2's and
Qrof =250 VAR at t = 5 s: the (a) active power and (b) reactive power.

Innovation Hub

Director of
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Multivariable Control Design of VSG: Experimental Validation
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Figure 26: Experimental results of the VSG and OMPC with zero steady-state error Q
controller (KZSEQ) during a grid-frequency drop of -0.15 Hz at t = 1 s: the (a) active

power, (b) reactive power, (c) frequency deviation generated by the controller, and (d)
d-axis and g-axis PCC voltage reference deviation.

Behrooz Bahrani, Director of Grid Innovation Hub
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Figure 26: Experimental rgsults °f the VSG and OMPC with zero steady»s‘tate error Q( Figure 27: Experimental results of the VSG and OMPC with zero steady-state error Q
controller (KZSEQ) during a grid-frequency drop of -0.15 Hz at t = 1 s: the (a) active controller (KZSEQ) during a grid voltage sag of -13 V at t = 2 s: the (a) active power,
power, (b) reactive power, (c) frequency dev.lat.lon generated by the controller, and (d) (b) reactive power, (c) frequency deviation generated by the controller, and (d) d-axis
d-axis and q-axis PCC voltage reference deviation. and qaxis PCC voltage reference deviation.
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Challenges

@ Inverters are vulnerable during faults and fault recoveries.

@ Poorly-tuned controllers in cascaded loops might lead to
undesired interactions/oscillations.

@ This is typically more pronounced in weak networks. PWM
@ Trigger protection devices = lead to unnecessary SCR=18 — SCR =28 — SCR = 45|
disconnections and instability. R ‘ ‘ ‘ ‘ :
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Figure 28: Fault recovery uwh different SCRs

S. P. Me, S. Zabihi, F. Blaabjerg and B. Bahrani, " Adaptive Virtual Resistance for Postfault Oscillation Damping in Grid-Forming Inverters,” in
|EEE Transactions on Power Electronics, vol. 37, no. 4, pp. 3813-3824, April 2022, doi: 10.1109/TPEL.2021.
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Challenges

@ Inverters are vulnerable during faults and fault recoveries.

@ Poorly-tuned controllers in cascaded loops might lead to
undesired interactions/oscillations.

@ This is typically more pronounced in weak networks. PWM
@ Trigger protection devices = lead to unnecessary SCR=18 — SCR =28 — SCR = 45|
disconnections and instability. E. 1 ‘ ‘ ‘ ‘ :
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S. P. Me, S. Zabihi, F. Blaabjerg and B. Bahrani, " Adaptive Virtual Resistance for Postfault Oscillation Damping in Grid-Forming Inverters,” in
|EEE Transactions on Power Electronics, vol. 37, no. 4, pp. 3813-3824, April 2022, doi: 10.1109/TPEL.2021.
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Current
control

Fault Fault
Vpce Instant _~ recovery

o Virtual Resistance (VR) is well-known in the literature for oscillation damping.
o A small fixed R, is not sufficient to damp the oscillation in weak grids.

@ A large fixed R, requires higher active current.

Dr. Behrooz Bahrani, Director of Grid Innovation Hub April 19, 2023
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@ The measured power, Py,, is passed through a filter U] _VRsiL
network to form the VR value, R, .

@ Need to be adaptive as grid's topology is dynamic.

@ Dynamic virtual resistance, only added in the
fault-recovery process.

(2 IF85
@ More VR is used in the early stage of fault recovery. ‘

@ Less VR is used in the later stage of fault recovery.

Normal
Fault

High-cut-off LPF
Low-cut-off LPF

@ The operation of the AVR is governed by a state
machine.

Figure 28: The state machine calculating the adaptive VR (AVR)

Behrooz Bahrani, Director of Grid Innovation Hub
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Figure 29: Fault recovery with different SCRs
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Figure 30: Fault recovery with fixed virtual resistance (Sim.).
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Figure 31: Fault recovery with adaptive virtual resistance (Sim.).
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Advantages

@ A PLL-less control strategy

@ Excellent performance in strong and weak grids
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Figure 32: Power-Synchronized Grid-Following Inverters

B. Bahrani, " Power-Synchronized Grid-Following Inverter Without a Phase-Locked Loop,” in IEEE Access, vol. 9, pp. 112163-112176, 2021.
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@ A PLL-less control strategy i

| Gate drives

@ Excellent performance in strong and weak grids
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o Offline optimization-based power controller
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Figure 32: Power-Synchronized Grid-Following Inverters

B. Bahrani, " Power-Synchronized Grid-Following Inverter Without a Phase-Locked Loop,” in IEEE Access, vol. 9, pp. 112163-112176, 2021.
Dr. Behrooz Bahrar rector of Grid Innovation Hub April 19, 2023
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Power-Synchronized Grid-Following Inverters

Advantages

@ A PLL-less control strategy

o Excellent performance in strong and weak grids

@ Real-time tuning of the power controller 1 order ontroler A
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Figure 33: Linear Parameter-Varying Control PSGFLIs

M. Zarif Mansour, M. H. Ravanji, A. Karimi and B. Bahrani, " Linear Parameter-Varying Control of a Power-Synchronized Grid-Following
Inverter,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 2, pp. 2547-2558, April 2022.
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Power-Synchronized Grid-Following Inverters

Advantages

@ A PLL-less control strategy

o Excellent performance in strong and weak grids

@ Real-time tuning of the power controller L order controller o
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Figure 33: Linear Parameter-Varying Control PSGFLIs

M. Zarif Mansour, M. H. Ravanji, A. Karimi and B. Bahrani, " Linear Parameter-Varying Control of a Power-Synchronized Grid-Following
Inverter,” in IEEE Journal of Emer, and Selected Topics in Power Electronics, vol. 10, no. 2, pp. 2547-2558, April 2022.
Dr. Behrooz Bahrani, Director of Innovation Hub April 19, 2023
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Figure 34: Enhanced Frequency control for PSGFLIs

N. Mohammed, M. H. Ravanji, W. Zhou and B. Bahrani, "Enhanced Frequency Control for Power-Synchronized Grid-Following PLL-less
Inverters,” Under review.
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Advantages

@ A PLL-less control strategy

o Excellent performance in strong and weak grids

calculation

@ Real-time tuning of the power controller

@ Stable operation even under large grid
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Figure 35: Double-Synchronous-Reference-Frame-Based for PSGFLIs

N. Mohammed, W. Zhou and B. Bahrani, " Double-Synchronous-Reference-Frame-Based Power-Synchronized PLL-Less Grid-Following Inverters
for Unbalanced Grid Faults,” Under review.
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Synchronous Condenser (SynCon)
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Synchronous Condensers (SynCons) are synchronous machines without a prime mover.
Advantages

@ Contribution of short-circuit power

@ Voltage support (exciter)

@ Providing inertia

Drawbacks

o Installation/operation costs

o Lead-time ' #Z

Figure 36: https://new.siemens.com/

Dr. Behrooz Bahrani, Director of Grid Innovation Hub April 19, 2023
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Optimal Allocation and Sizing

Procedure

@ An objective function based on operational costs
and voltage deviation is formulated.

@ A meta-heuristic algorithm, such as GA, is used in
one study.

@ A convex optimisation approach is used in another
study.

Calculate ob-

jective function End
SynCons A
installation No Yes
Stopping
criteria
Update admit- satisfied?
tance matrix
Optimization
Calculate SCR i Start

Figure 37: Flowchart of existing optimization procedures

S. Hadavi, M. Z. Mansour and B. Bahrani, " Optimal Allocation and Sizing of Synchronous Condensers in Weak Grids With Increased Penetration
of Wind and Solar Farms,” in IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 11, no. 1, pp. 199-209, March 2021.

S. Hadavi, J. Saunderson, A. Mehrizi-Sani and B. Bahrani, " A Planning Method for Synchronous Condensers in Weak Grids Using Semi-Definite
Optimization,” in IEEE Transactions on Power Systems, vol. 38, no. 2, pp. 1632-1641, March 2023, doi: 10.1109/ TPWRS.2022.3174922.
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Fault Ride Through (FRT) Test without SynCons
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Figure 38: Fault Ride Through (FRT) Test without SynCons
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Fault Ride Through (FRT) Test with optimal SynCons
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Figure 39: FRT test results with meta-heuristic approach
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Figure 39: FRT test results with convex approach
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Particularly in weak grids, the exciter type and its
‘ —————— tuning influence:
Synchronous @ response time
Machine Exciter Synchonous ;’W:er P '
Regulator vstem @ interaction with nearby farms,
e @ SSO in power systems.
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Figure 40: Block diagram of excitation control system

S. Hadavi, D. B. Rathnayake, G. Jayasinghe, A. Mehrizi-Sani and B. Bahrani, " A Robust Exciter Controller Design for Synchronous Condensers
in Weak Grids,” in IEEE Transactions on Power Systems, vol. 37, no. 3, pp. 1857-1867, May 2022.
Dr. Behrooz Bahrani, Director of Innovation Hub
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Figure 40: Block diagram of excitation control system

@ SSO in power systems.

Solutions

@ a robust exciter controller, designed based on the
system’s frequency-domain model

o Considering system’s model for different SCR and
X/R ratios,

S. Hadavi, D. B. Rathnayake, G. Jayasinghe, A. Mehrizi-Sani and B. Bahrani, " A Robust Exciter Controller Design for Synchronous Condensers

in Weak Grids,”

Dr. Behrooz Bahrani, Director of Grid Innovation Hub

in IEEE Transactions on Power Systems, vol. 37, no. 3, pp. 1857-1867, May 2022.
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A Data-Driven SynCon Exciter Control: Large Disturbance Tests
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e For grid-following inverters (GFLIs), an index to determine the stability margin is proposed.

o A modified PLL is proposed for GFLIs that expands the stability margin of the system considerably.
@ A new breed of grid-following inverters based on power synchronisation is proposed.

@ A number of control strategies for grid-forming inverters (GFMIs) are proposed.

@ Output capability curves for grid-forming and grid-following inverters are determined.

Two allocation techniques and an exciter control design for SynCons are also proposed.

Dr. Behrooz Bahrani, Director of Grid Innovation Hub April 19, 2023
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