

System Services for a 100% Renewable Power System

Mark O'Malley*, Fatemeh Rajaei-Najafabadi, Elina Spyrou

*Leverhulme Professor of Power Systems

Imperial College London

Outline of Methodology

Wind in the Electricity Market in Ireland

Mark O'Malley, Electricity Research Centre, University College Dublin

Paul Smith, EirGrid

23 Oct 2006

UWIG, Oklahoma City, USA

Impact of wind on generation reserve requirements in Ireland

Mark O'Malley, Electricity Research Centre, University College Dublin

25th October 2006 UWIG, Oklahoma City, USA

Operating reserve required

Where we were then	Where we wanted to go
Local	Global
Specific	General
Piecemeal	Holistic
Opaque	Transparent
Expensive & unreliable ?	Cheap & Reliable ?

Doherty, R. and O'Malley, M.J., "A New approach to quantify reserve demand in systems with significant installed wind capacity", IEEE Transactions on Power Systems, Vol. 20, pp. 587 -595, 2005.

Summary G-PST Research Agenda

Research Program	Description	Number of Questions
Inverter Design	Development of capabilities, services , design methodologies and standards for IBRs.	10
Tools and Methods	New tools and methods required to ensure reliability, security, and stability in power systems.	9
Control Room of the Future	Development of new technologies and approaches for enhanced real-time visibility and analysis in power system operator control rooms.	17
Planning	New planning metrics, methods, and tools to capture the characteristics and influence of a changing resource mix.	15
Black Start	Black Start Creating new procedures for black starting and restoring a power system with high or 100% IBR penetrations.	
Services	Quantifying the technical service requirements required of future power system to maintain the supply-demand balance reliably and at least cost.	7

Balance supply and demand at minimum cost and acceptable reliability

IBRs replacing Synchronous Machines

Jason MacDowell

Thomas Bowen NREL, USA

Tim Green Imperial College London, UK

University of Newcastle, UK

Debbie Lew ESIG, USA

Yitong Li Imperial College London, UK GE, USA

Julia Matevosyan

ERCOT, USA

Nicholas Miller HickoryLedge, USA

Mark O'Malley ESIG, Ireland

Deepak Ramasubramanian EPRI, USA

October 8th, 2021

Energy and Capacity

Technical Services

Frequency and Voltage Control

Synchronisation and Damping

Protection and Restoration

AEMO • INITIATIVES • MAJOR PROGRAMS • FAST FREQUENCY RESPONSE

Figure 1: Frequency distribution within the normal frequency operating band in the NEM (2005 Snapshot vs. 2018 Snapshot)

Fast Frequency Response

Very Fast FCAS Market Commencement

On the 15 July 2021, the AEMC made a final rule to introduce two new market ancillary services in the NEM under the existing Frequency Control Ancillary Services (FCAS) arrangements, the very fast raise and very fast lower FCAS markets.

Following consultation with stakeholders and work undertaken by AEMO, the very fast raise and very fast lower FCAS markets opened on Monday 9 October 2023 at 1.00pm (Market Time).

Very Fast FCAS Market Commencement – Go for Monday 9 October 2023

Source: AEMO, Removal of disincentives to the provision of primary frequency response during normal operating conditions — Electricity rule change proposal, 1 July 2019, p.14.

Framework: Primary layer

Goal

Balancing supply and demand at minimum cost and acceptable reliability

Framework: Services and needs layer

Framework: Control layer

Goal

Services & Needs Layer

Control Layer

Framework: Technology layer

Technology Layer

Balancing supply and demand at minimum cost and acceptable reliability

Generation System		Bulk Power System Technology	Distribution and Demand Side	Communication System	Storages			
Generation Primary Resources Fossil Fuel Hydro Nuclear Geothermal Wind Solar Biomass Hybrid	Generation Generation Technology Synchronous Machines Grid Forming Inverters Grid Following Inverters	Technology Transmission Lines Transmission Interconnection FACTS Synchronous Condenser HVDC Lines Relays Circuit Breakers	Demand Side Technology Distributed Energy Resources Electrical Cars Smart Buildings Smart Meters Relays and Fueses Micro-PMU Distribution Substation	Communication Infrastructure Internet Gas Network	Long Term Pumped Hydroelectric Storage Thermal Energy Storage Hydrogen storage and fuel cell	Medium Term Compressed Air Energy Storage	Short term Battery Energy Storage Flow Battery Energy Storage	Very Short term Capacitor and supercapacitor Superconducting Magnetic Energy Storage Flywheel

Framework exampleContainment of RoCoF

Bring it all together Institutionally for Transformation of the Global Power System

Framework needs much more work

O'Malley et al., "Grand challenges of Wind Energy Science – Meeting the needs and services of the power system", Wind Energy Science, in review.

Conclusion

- > Significant detailed system level work needed to gain generalisable insights (ongoing)
- > Managing needs and services due to IBRs replacing SMs we to have a rigorous process/methodology
- > Need a framework to do this?
- ➤ Have made a start more to be done

Acknowledgements & Further Reading

• Leverhulme Trust International Professorship

Further Reading

- https://globalpst.org/
- https://www.esig.energy/