Flexibility Products in Markets and Operations ESIG Fall Technical Workshop Amber Motley; Sr. Manager, Short Term Forecasting Hong Zhou, Market Development Analyst Tobiah Steckel, Forecast Specialist October 2022 #### Agenda - CAISO Overview - Challenges - Uncertainty Tools #### California ISO As a federally regulated nonprofit organization, the ISO manages the high-voltage electric grid. **52,061** MW record peak demand (Sept. 6, 2022) **224.8** million megawatt-hours of electricity delivered (2020) 75,747 MW power plant capacity rigation District Source: California Energy Commission 1,119 power plants Source: California Energy Commission #### **Current Renewable Penetration Facts** Historical statistics and records (as of 10/01/2022) June 7, 2022 at 12:16 p.m. #### Previous record: 14,136 MW, May 16, 2022 Peak net imports 11,894 MW Sept. 21, 2019 at 6:53 p.m. ⇒ Wind peak 6,465 MW May 28, 2022 at 5:39 p.m. #### Previous record: 6,265 MW, March 4, 2022 Peak percentage of renewables compared to demand 103.5% May 8, 2022 at 3:39 p.m. Previous record: 99.87%, April 30, 2022 Peak demand 52,061 MW Sept. 6 at 4:57 p.m. #### Second highest: 50,270 MW, July 24, 2006 Steepest ramp over 3-hour period 17,660 MW March 11, 2022 starting at 2:59 p.m. #### Second highest: 17,298 MW, April 24, 2022 ² Indicates the highest amount of renewables serving peak electricity demand on any given day. | Currently Installed | Capacity | |------------------------------------|------------| | Number of Renewable Resources | 500 | | MW Capacity Large Scale Renewables | 21,500 MWs | | MW Capacity Behind-the-Meter Solar | 11,000 MWs | Based on 1-minute averages, and includes dynamic transfers. Values are subject to revision as data is refined. #### **CHALLENGES** #### System and markets are evolving towards a nondeterministic environment - Weather variables, such as temperatures, introduce uncertainty components to multiple variables in the power system, including - Load forecast - Behind the meter generation - Large scaled wind and solar production - Regulation requirements - CAISO still uses a deterministic market clearing process with deterministic inputs - Different products and procedures are developed to then "factor in" uncertainty #### **UNCERTAINTY TOOLS** #### Use of Uncertainty information into Load Conformance #### **Net-Load Uncertainty Requirements** ## Imbalance Reserves vs. Real-Time Flexible Ramping Product #### **Imbalance Reserves** - Hourly Product - 15-minute dispatchable - Biddable - Covers granularity difference <u>and</u> uncertainty between DAM and FMM - All awards are co-optimized and settled simultaneously #### **RT Flexible Ramping Product** - 15-minute product - 5-minute dispatchable - Not biddable - Cover uncertainty from FMM to RTD - Awards are calculated in successive runs and are only settled from the binding to the first advisory interval - Demand Curve for uncertainty ISO Public FRP requirement calculation- enhancements utilizing quantile regression # Enhancement to the Flexible Ramp Product Uncertainty Requirement Calculation - The ISO proposes the Mosaic model incorporating weather information into estimation of uncertainty requirement. - The mosaic model utilizes quantile regression; where load, wind, and solar data are regressors. - Compared to the Histogram approach, the Mosaic approach has: - Similar coverages - Less requirement on average - Closer proximity to the observed uncertainty - Comparable exceeding number - Less impact of seasonality # Daily Graph (CISO) showing the adaptive nature of M vs H with differing weather patterns # How do we assess the performance of the proposed approach? M vs. H - Four criteria in measurements - Coverage: This is used to check the validity of a model, and is the coverage of observed uncertainty against the estimate requirement. The uncertainty requirement is targeted for 95%, which is achieved with 97.5% for upward and 2.5% for downward requirement. - Requirement: This is the average of the estimated requirement over a period of time. - Closeness: This is defined as the average distance between the observed uncertainty and the estimated requirement. - Exceeding: This is the average MW difference when the observed uncertainty is exceeding the estimated requirement. # The enhanced quantile approach provides marginal improvements to the uncertainty requirement calculation | BAA | FRU_H | FRU_M | FRD_H | FRD_M | |-------|---------|---------|---------|---------| | APS | 150.68 | 135.89 | -127.24 | -117.99 | | BANC | 60.52 | 41.45 | -49.14 | -43.81 | | BCHA | 157.49 | 151.57 | -169.00 | -161.67 | | CISO | 1142.37 | 1042.13 | -943.51 | -850.52 | | IPCO | 105.89 | 101.74 | -132.72 | -124.42 | | LADWP | 152.43 | 147.32 | -148.52 | -135.85 | | NEVP | 165.02 | 141.58 | -139.53 | -129.69 | | NWMT | 81.15 | 77.15 | -98.52 | -91.95 | | PACE | 250.80 | 241.12 | -286.39 | -273.01 | | PACW | 112.55 | 106.14 | -98.53 | -92.13 | | PGE | 130.70 | 121.66 | -118.67 | -112.25 | | PNM | 136.49 | 137.04 | -166.43 | -161.23 | | PSEI | 94.00 | 90.04 | -101.46 | -98.19 | | SRP | 113.68 | 102.66 | -109.17 | -97.01 | Requirement with proposed approach is lower than with current approach #### Other Considerations: Sampling of historical data set - Sampling Scheme 1: Rolling previous 40 days matching weekdays and 20 matching weekends. This is the sampling used in the ISO's current Histogram approach. - Sampling Scheme 2: A fixed 180 rolling days with varying number of weekdays and weekend (holidays included). The increased sample size will bolster the robustness of regression computation. - Sampling Scheme 3: In addition to the sampling scheme use the forward historical data in last year anchored from a date similar to the current day with matching weekday/weekend. The scheme balances out backwards and forward data for any given day. ## Sampling scheme 3 performs the best throughout the year for both M & H ## CAISO Forecasting Advancements in Support of High Penetrations of Renewable Resources #### **APPENDIX** #### Regulation Requirement Enhancements | | Current | ested o | |-------------------------------------|--|----------------| | Tag used for Actual/Historical Data | ACE*, i.e. ACE combined with Regulation Dispatched | ACC Requested | | Historical Data
Granularity | 1 minute average data (extremes are not muted) | -2k | | Historical Dataset | Monthly analysis run for 2 datasets: Same month last year + most recent 30 days Only most recent 30 days The max of both results is then taken for the recommendation during hours. This is intended to focus on the recent behavior without eliminating s patterns from last year. | · · | | Unchanged | Hourly values are determined by percentiles 95th percentile for Sunny (less volatility forecasted) 2.5% off each tail - 97.5% Up and 2.5% Down 98th percentile for Cloudy (more volatility forecasted) 1% off each tail – 99% up and 1% down Base numbers updated at minimum monthly 95th/98th recommendation updated daily according to forecasted of the operations can adjust as needed Due to weather, outages, software updates, AGC performance few days operational issues, etc. | VER Volatility | ISO Public Page 20 #### Detailed Description of the Requirement Calculation In order to increase transparency on the proposed Quantile methodology and enable interested parties to replicate the calculation, CAISO posted the step-by-step description of the methodology. The document is available at http://www.caiso.com/Documents/BusinessRequirementsSpecifications10-FlexibleRampProduct-RequirementsEnhancements.pdf #### Anatomy of a Probabilistic Forecast - Probabilistic forecasts provide users with valuable information on the possible scenarios of wind/solar generation - It provides probabilistic thresholds in which the variables are expected to materialize: - A 100% threshold indicates total certainty of the variable being within the band - Lower probability thresholds indicate that the likelihood of the variable being within a narrower band (e.g., 90%) - Area between thresholds represent the probability of the variable materializing only in that space (e.g., (100-95)/2 = 2.5%) - The redline represents the central expected forecast #### Solar Probabilistic Forecasts - Probabilistic forecasts for solar produced by UL as part of DOE-funded OPTSUN* - Methods have been applied to the California ISO ^{*} https://www.energy.gov/sites/prod/files/2018/10/f56/Solar-Forecasting-2-Kickoff-EPRI.pdf ### Additional Material: Stakeholder Initiatives, Research, and Publications - Stakeholder Initiatives: - Day Ahead Market Enhancements - Flexible Ramp Product Enhancements - Resource Sufficiency Evaluation Enhancements (Phase 1B) - Research and Publications: - N. Costilla-Enriquez, M. A. Ortega-Vazquez, A. Tuohy, A. Motley, and R. Webb, "Operating Dynamic Reserve Dimensioning Using Probabilistic Forecasts," *IEEE Trans. Power Syst.*, Vol. XX, Issue X, pp., XXX. 2022. [DOI] [arXiv] - DOE (EERE) funded projects "Operational Probabilistic Tools for Solar Uncertainty (OPTSUN)" - https://www.energy.gov/sites/prod/files/2018/10/f56/Solar-Forecasting-2-Kickoff-EPRI.pdf - https://www.energy.gov/sites/default/files/2019/10/f67/9%20Solar-Forecasting-2-Annual-Review_The-Johns-Hopkins-University.pdf