

Integrated Strategic System Planning Initiative

Modeling Framework, Demonstration Study Results, and Key Insights

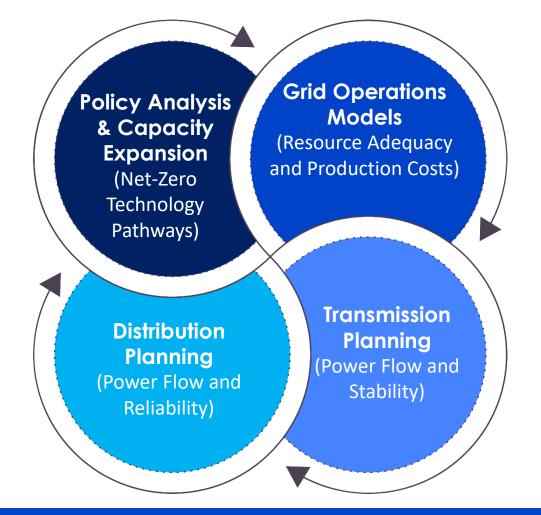
Anish Gaikwad, Sr. Program Manager

ESIG Spring Workshop Tucson, AZ

March 27, 2023

.epri.com

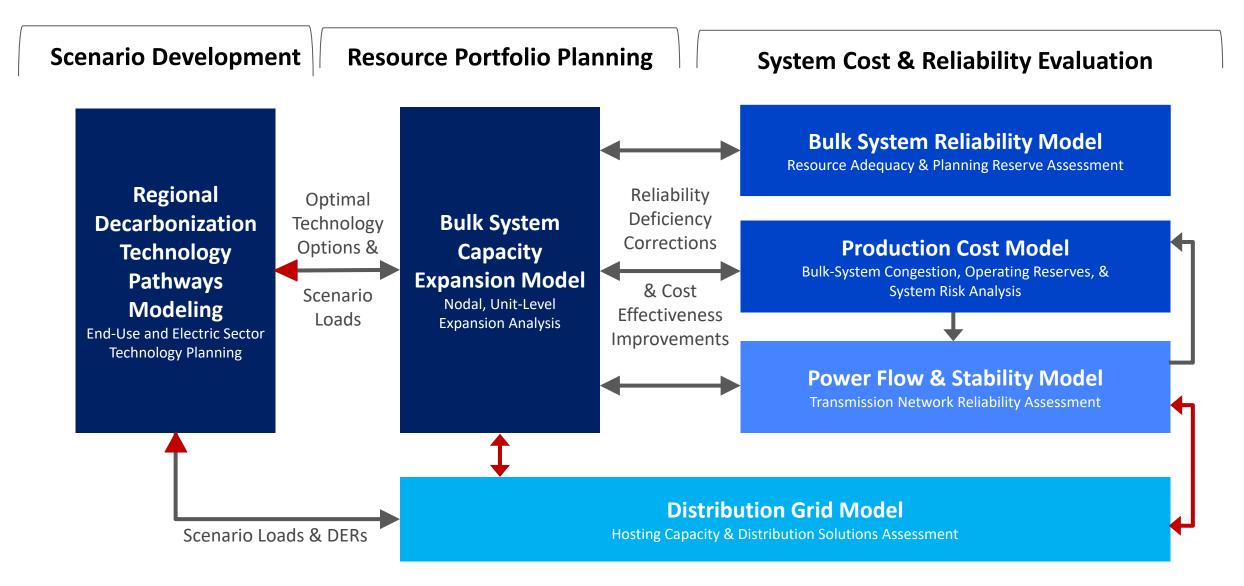
www


EPRI's Integrated Strategic System Planning (ISSP) Initiative

Integrated Planning for Strategic Questions

Least-cost pathway to electric sector decarbonization?

- Sufficient capacity, energy, and flexibility to reliably balance supply and demand?
- T&D investments for reliability/resiliency for a distributed, inverter-based supply mix?



Develops a generalizable analytical framework to assess future expansion plans across supply and delivery (T&D) that incorporates distributed energy resources & ensures reliability

ISSP NY Demonstration Study Modeling Process

NY Study Links

Future Links

One Toolbox* & a Range of Coordinated Modeling Tools

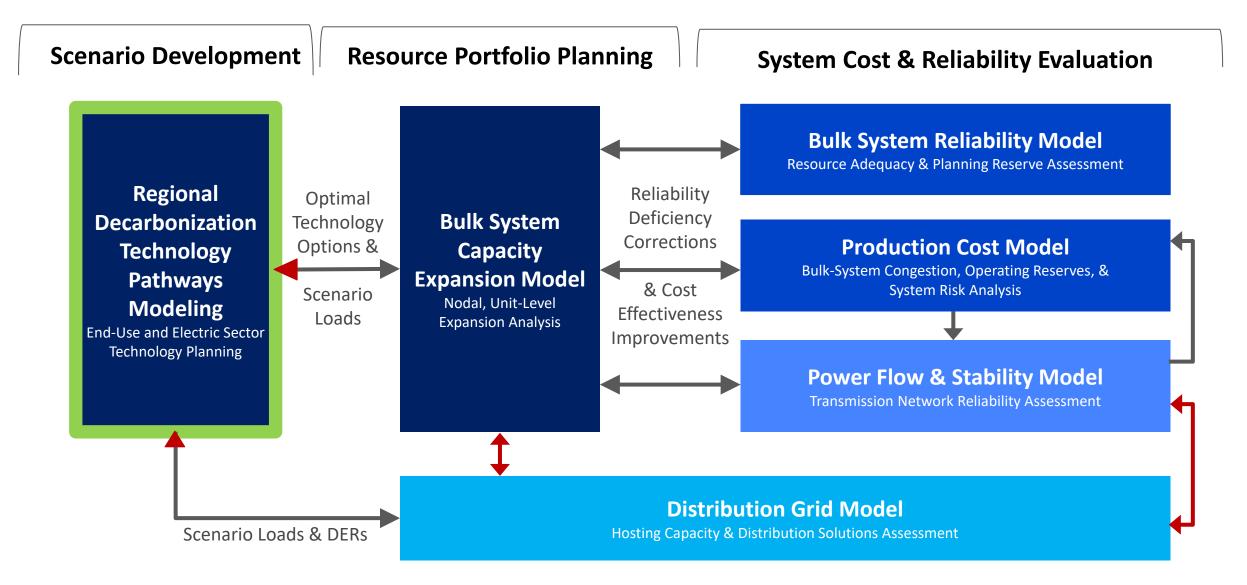
Model Type	Tool	Primary Objective(s) in ISSP Demonstration Study	Generation Scope	Transmission Scope	Distribution & DER Scope	Temporal Resolution
Regional Technology Pathways Model		Regional End-Use and Electric Sector Technology Planning	Aggregate resources	Zonal "pipe and bubble network"	Aggregated end-use technologies & DERs explicitly modeled	110 representative time slices per year
Power System Capacity Expansion Planning Tool		System-specific G&T Expansion Analysis	Individual existing and new generators	Nodal	End-Use & DERs modeled via load adjustments	48 time slices per year, using statistical fitting to the load duration curve
System Reliability Assessment Tool	PLEXOS	Resource Adequacy & Planning Reserve Assessment	Individual existing and new generators	Zonal	End-Use & DERs modeled via load adjustments	1 year, 8760 hours
Production Costing Tool	PLEXES + EPRI Scheduling & Dispatch Tool	Bulk-System Network Congestion, Operating Reserve, & System Risk Analysis	Individual existing and new generators	Nodal	End-Use & DERs modeled via load adjustments	1 year, 8760 hours & snapshots
Power Flow Model	PSS®E	Transmission Network Reliability Assessment	Individual existing and new generators	Nodal	DERs modeled via load adjustments	1 year, snapshots
Distribution Grid Model	EPRI DRIVE	Hosting Capacity & Distribution Solutions Assessment	No bulk-system	124 feeders 11 substations	End-use technologies and DERs explicitly modeled	1 year, 8760 hours

* This toolbox shows specific models used for the ISSP demonstration study; it is one example of many

NY Demonstration Study Scenarios

Assumptions	Reference	Decarbonization + Accelerated Electrification
	"Business-as-usual" with no additional decarbonization technology or policy drivers	Rapid U.Swide decarbonization, driven by policy and high electrification
Environmental and CO ₂ Policies	 All major "on the books" federal, regional, and state environmental and climate policies Includes New York's SB6599 (CLCPA) 	 Reference, plus <u>U.S. electric sector</u> is zero carbon by 2035 No negative emissions or offsets permitted Interim 80% carbon-free by 2030 target <u>U.Swide</u> carbon pricing over the rest of the economy, consistent with a U.S. 50x2030 goal
Technology	Default EPRI inputs for technology cost and performance	 Reference, plus Faster diffusion of electrified consumer technologies: Accelerated heat pump adoption Accelerated turnover of existing end-use equipment Lower cost and higher performance electric vehicles and heat pumps

Determining the Role of Emerging Technologies and Other Resources in Future Energy Systems Scenario Development for Long-Range Planning

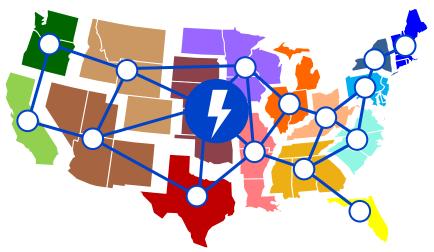


ISSP NY Demonstration Study Modeling Process

NY Study Links

EPRI

Future Links



Regional Decarbonization Technology Pathways Modeling

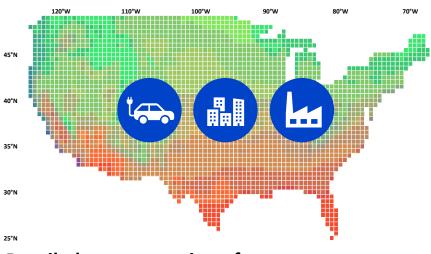
Electric Generation

US-REGEN

Regional Economy, GHG, and Energy

Detailed representation of:

- Energy and capacity requirements
- Renewable integration, transmission, storage
- Federal, regional, and state-level policies and constraints

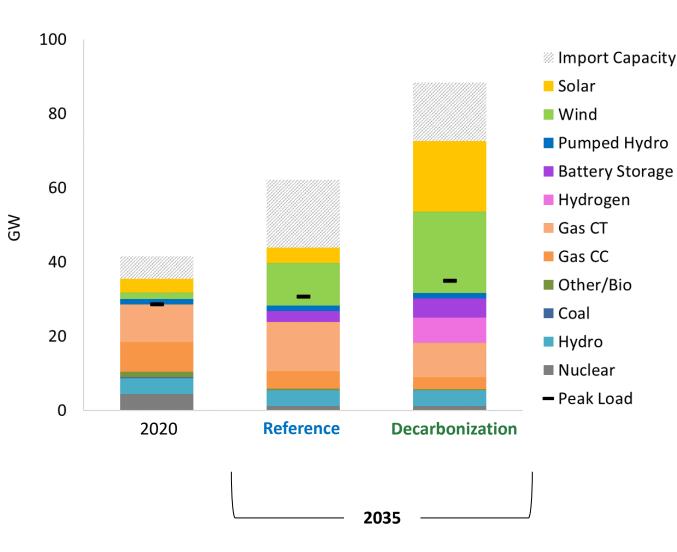


Model Outputs:

Economic equilibrium for generation, capacity, and end-use mix

Emissions, air quality, and water

Energy Use


Detailed representation of:

- Customer heterogeneity across end-use sectors
- End-use technology trade-offs
- Electrification and efficiency opportunities

Documentation, articles, and reports available at <u>https://esca.epri.com</u>

US-REGEN NY Installed Generation Capacity by Scenario

The modeled **Reference Scenario** portfolio shows:

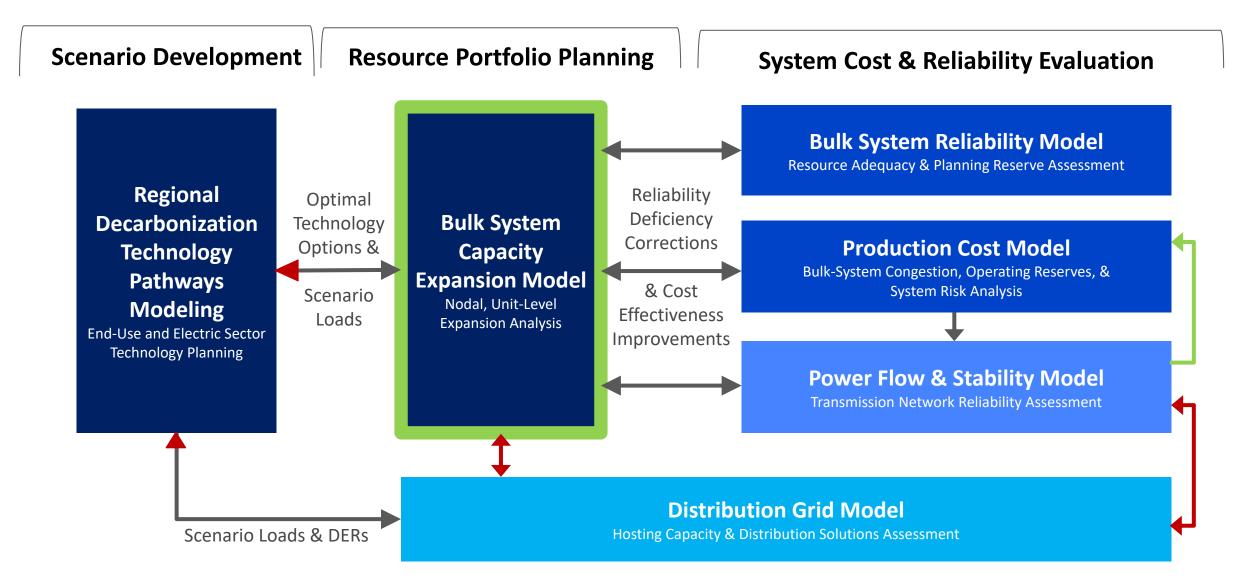
- Continued strong economics for gas
- Economic deployments for renewables (mostly wind)
- Modest role for short-duration batteries

Compared to Reference, the modeled **Decarbonization Scenario** drives:

- Significantly higher wind
- Significantly higher utility-scale solar
- Electrolytic hydrogen-fired generation
- Additional and longer duration batteries (~20 hr)
- Earlier retirement of carbon emitting natural gas-fired generation

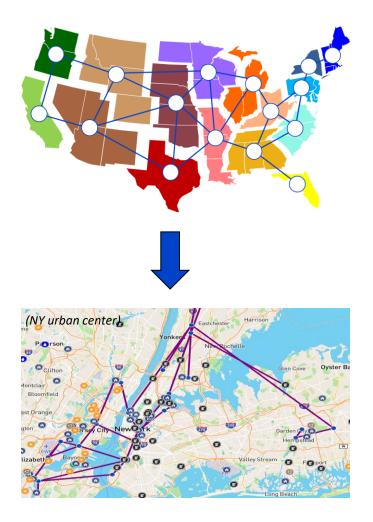
3

Identifying Long-Term Resource Expansion Portfolios System Resource Portfolio Planning



ISSP NY Demonstration Study Modeling Process

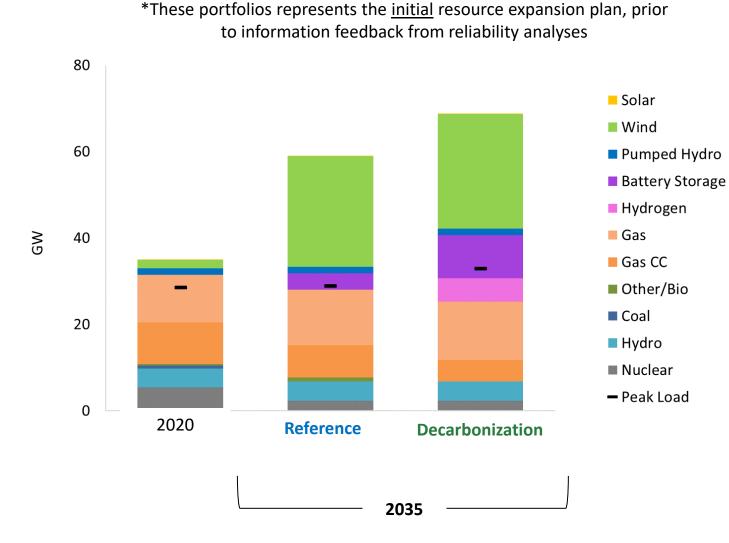
NY Study Links


EPRI

Future Links

Nodal Capacity Expansion Modeling Objectives

- Detailed power system reliability studies benefit from each generating unit in a system being represented by its physical location and engineering/operating characteristics, and the transmission network lines between them and localized loads.
- We use Energy Exemplar's long-term capacity expansion planning model (PLEXOS-LT Plan) and inform it with US-REGEN scenarios to develop a power system model with the unit-level detail and system topology required for the system cost and reliability evaluations in this study.
- For this study, PLEXOS-LT Plan is configured as a nodal model, optimizing the generating capacity portfolio as a mixed integer program to site discrete units across nodes.
- PLEXOS-LT Plan is run several times throughout the study; the next slides show the initial portfolio used for further reliability study.


Regional technology planning models provide a critical starting point for detailed unit-level capacity expansion and operations analyses

US-REGEN Data Transferred to PLEXOS LT Plan

	US-REGEN Data	Schematic of Data Transfer Process
	Candidate Generator Technologies	Transfer selected US-REGEN inputs
	Technology-Based Capital Costs	& outputs to common working
0413	Technology-Based FOM & VOM Costs	directory
	Fuel Costs	• Reformat & restructure data using
	Wind and Solar Profiles	Python scripts customized to CapEx
	RPS, CO ₂ constraints	model (e.g., PLEXOS-LT) input requirements
	Optimal Generation Capacity (GW) by Technology	
מושמוט	Electricity Demand (8760 Load) by Region/Zone	Call PLEXOS API to input the data into PLEXOS
)	Reserve Margin (calculated endogenously)	
		Initiate PLEXOS LT Plan Model

PLEXOS LT Plan NY Installed Capacity* by Scenario

Re-optimizing the resource portfolio at the unit-level and across a nodal transmission network drives:

A Reference portfolio with

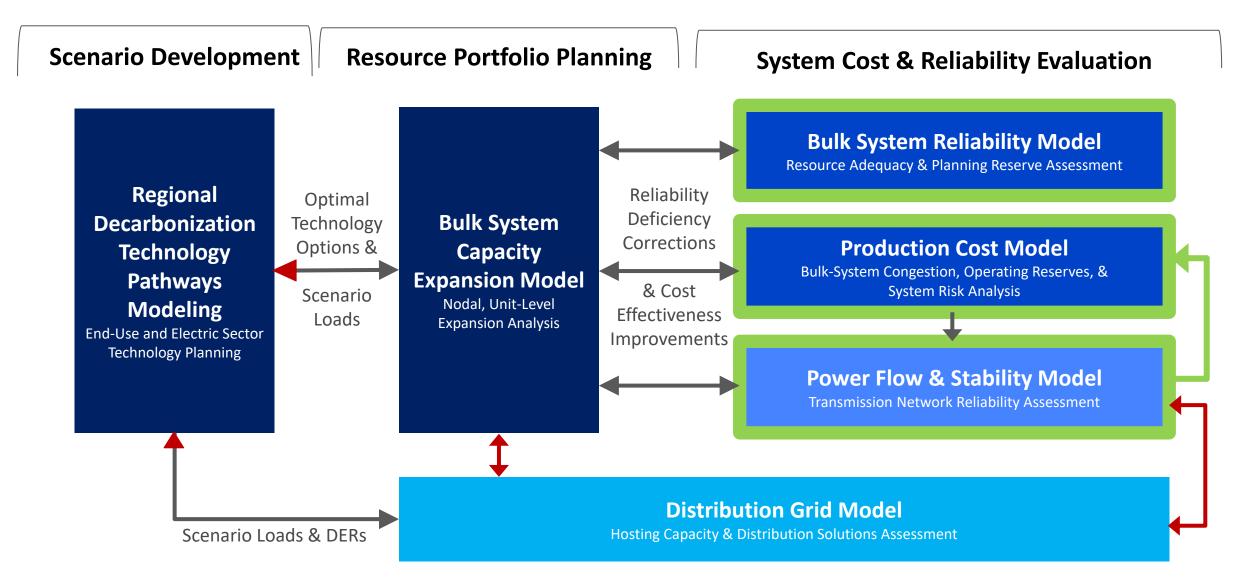
- Significant new on and off-shore wind
- New short-duration batteries
- Continued reliance on natural gas

A Decarbonization portfolio with

- Significant new on and off-shore wind
- Significant *long-duration* batteries
- New electrolytic H₂-fired generation
- Natural gas (slightly lower than Reference)

There is significantly more wind and less solar in the PLEXOS portfolios than in the US-REGEN scenarios used as a starting point. Key drivers:

- Demonstration study PLEXOS scenarios represent NY as an "island," and net-import capacity is replaced by new wind
- Nodal buses support significantly more offshore wind, reducing need for less economic solar


Assessing the Capability of the System to Meet Grid Operational Requirements System Cost & Reliability Evaluations

ISSP NY Demonstration Study Modeling Process

NY Study Links

EPRI

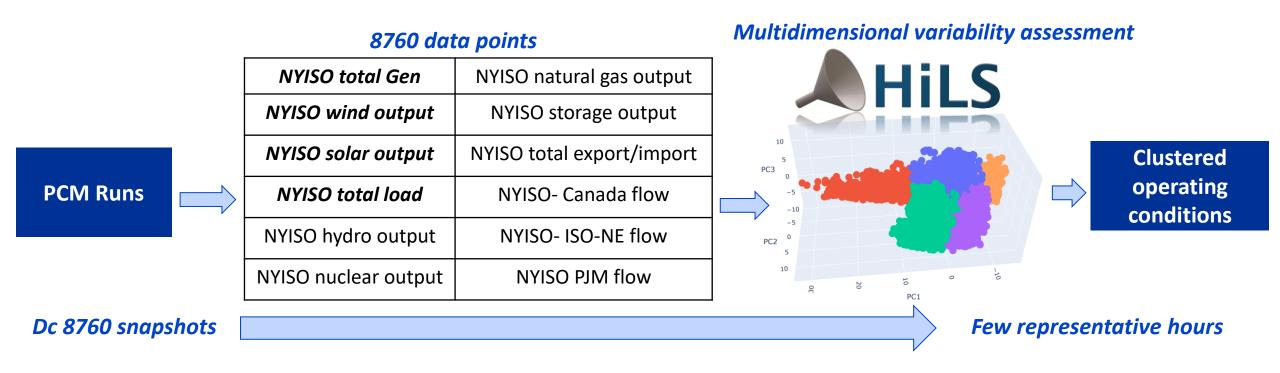
Future Links

Summary of Integrated Cost & Reliability Evaluations and Recommended Planning Actions: Decarbonization Scenario

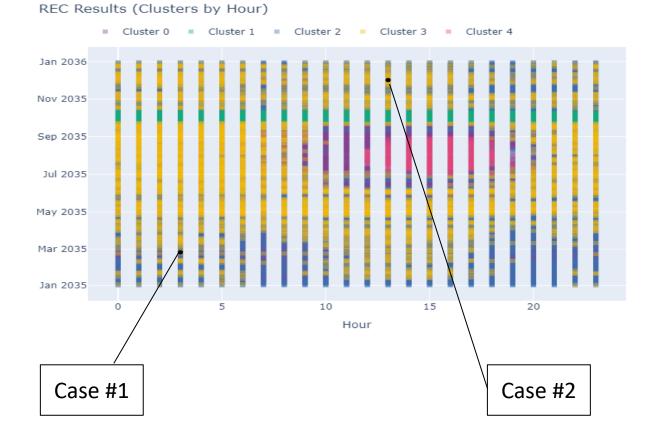
Green text highlights key differences from Reference

EPRI

Evaluation	Description	Key NY Study Finding(s)	Recommended Planning Actions
	Resource Adequacy— Planning Reserve Assessment	 Resource portfolio failed minimum LOLE target of 0.1 days/year High risk periods of unserved energy (e.g., high load due to heating on winter nights) 	• Start with higher (16%) PRM from Reference Scenario final portfolio and check sufficiency; explore other solutions (e.g., storage) to complement PRM needs
2	Resource Adequacy— Storage Assessment	 Significant LOLE benefits of longer duration storage 	 Increase duration of candidate batteries available in CapEx by 30%
3	PCM—Transmission Network Congestion Assessment	 Notable lines with significant congestion and overloading High variation in system wide prices 	• Allow CapEx model to consider economic transmission upgrades for all congested lines (37 new line candidates)
4	Operations Reserves & Risk Assessment	 Reference scenario passed key flexibility and contingency requirement tests 	 None (Note, performed a sensitivity analysis to show a case where the CapEx would need to be re-run)
5	Transmission Network Reliability Assessment	• 17 extra circuits <i>in addition to those</i> <i>required under Reference</i> for N-1 required to secure the Decarbonization portfolio	 Reliability-driven candidate transmission reinforcements are recommended for CapEx


Production Cost Module – Transmission Planning Linkage

5. Scenario Selection

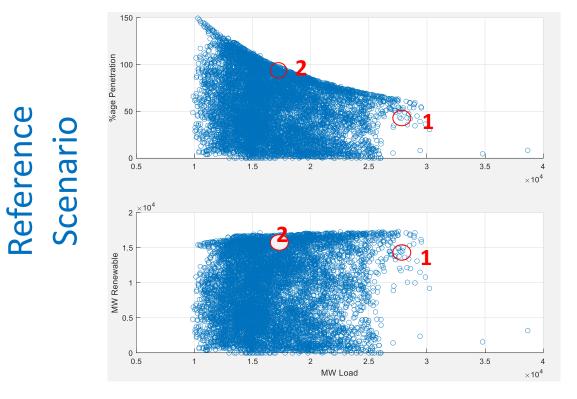

- Step 1: Group operating hours based on similarities in load levels, generation dispatch, renewable output, tie line flows etc. into clusters.
- * Step 2: Select cases from each cluster based on engineering judgement and system knowledge

- * The ISSP approach allows TPs a greater visibility into possible operating conditions by linking to PCM results
- * The HiLS process allows TPs to identify critical operating conditions by making the data manageable

5. Example: HiLS Clustering Analysis Results

The HiLS tool clustered the operating hours into 5 clusters

- □ *Cluster 0* Shoulder load, low % renewables
- Cluster 1 Low fall load with Nuclear units out for service
- Cluster 2 High winter load, high % renewables
- Cluster 3 Low winter/fall load, high % renewables
- Cluster 4 Summer peak load, low % renewables


Two cases were investigated from cluster 2 and 3 to demonstrate the remaining process

20

5. Selected Snapshots

Scenario	150 %age Penetration 00 1	1.5	2	2.5	3	3.5 ×10 ⁴
Scer	2 ×10 1.5 0.5 0 1	1.5	2 MW	2.5 Load	3	3.5 ×10 ⁴

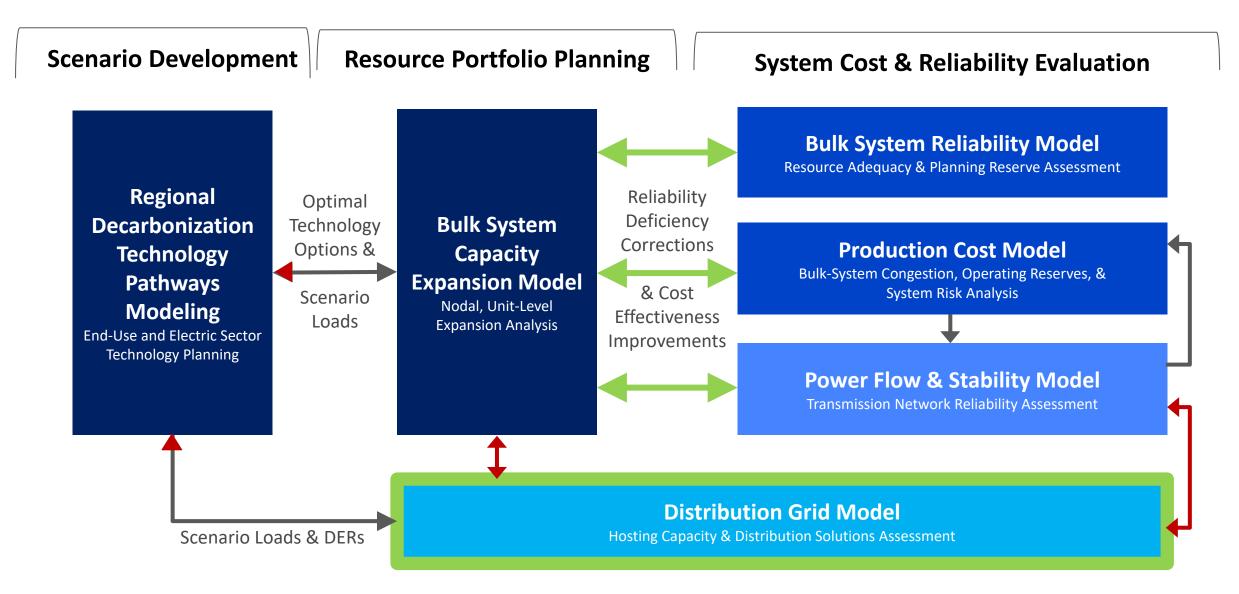
Metric	Case 1	Case 2
Total Generation	30935 MW	23570 MW
Total Onshore Wind	10768 MW	11558 MW
Total Offshore Wind	4000 MW	4250 MW
Total Solar/PV	0 MW	0 MW
Total Renewables	14768 MW	15808 MW
Total Load	29636 MW	16100 MW
Percentage renewable	49.8%	98.18%

Metric	Case 1	Case 2
Total Generation	29505 MW	20317 MW
Total Onshore Wind	14184 MW	11558 MW
Total Offshore Wind	4240 MW	4250 MW
Total Solar/PV	0 MW	0 MW
Total Renewables	18424 MW	16058 MW
Total Load	33223 MW	16620 MW
Percentage renewable	55.5%	96.2%

Decarbonization

5

Developing Robust Long-Term Resource Plans Capability of the System to Meet Grid Operational Requirements Correcting Reliability Deficiencies and Evaluating Distribution Solutions



ISSP NY Demonstration Study Modeling Process

NY Study Links

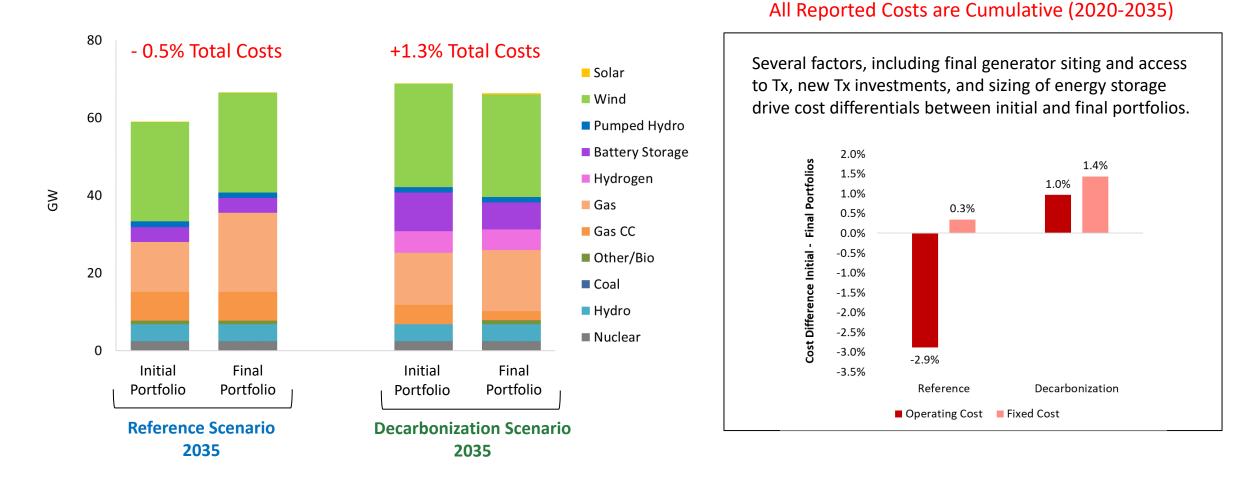
EPRI

Future Links

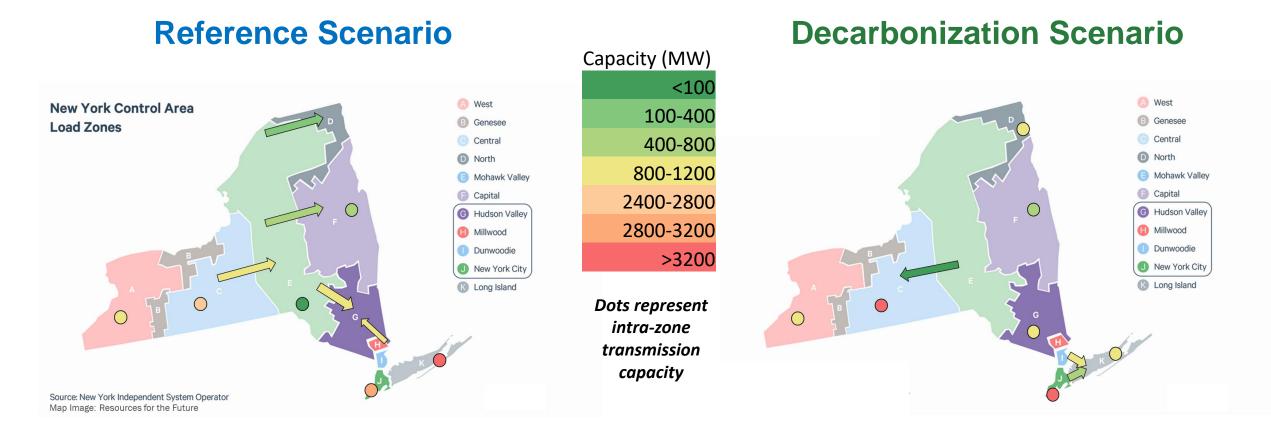
Planning Actions to Create a More Robust Resource Portfolio

 This study performs two main "corrective" actions for modifying the initial resource portfolio to address identified and potential future reliability deficiencies.

1. Correcting Identified Reliability Deficiencies in Bulk-System Resource Plan

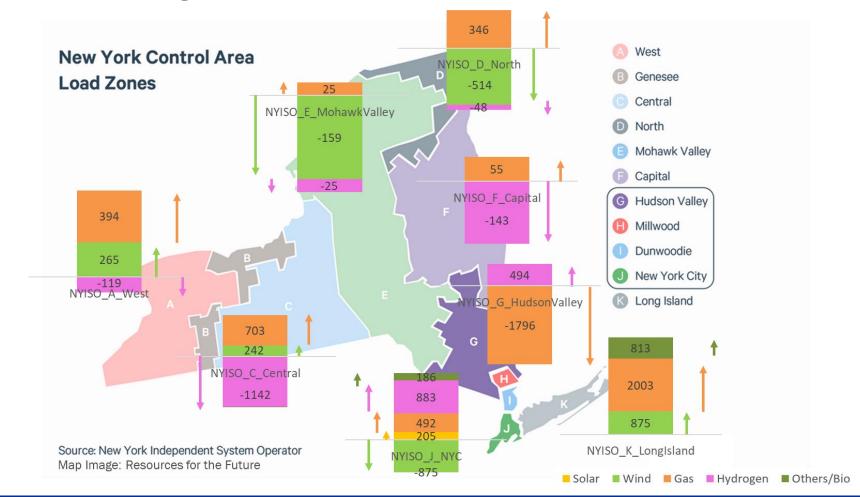

- PLEXOS LT Plan iteratively incorporates recommended planning actions identified in the system cost & reliability evaluations
- PLEXOS RA and PCM is re-run to verify benefits and calculate costs.
- Corrective actions focus on increasing the planning reserve margin, increasing the duration of candidate battery storage installations, and both economic and reliability-driven transmission reinforcements.

2. Coordinated DER & Wide Area Distribution System Planning Analysis


- A baseline distribution system grid model, US-REGEN scenario load and DER/end-use technology outputs, and potential Dx solutions and costs are to calculate the ability of the distribution system to accommodate future planned resources.
- Potential violations are assessed, and opportunities to modify the system with Dx solutions including non-wires alternatives are identified.

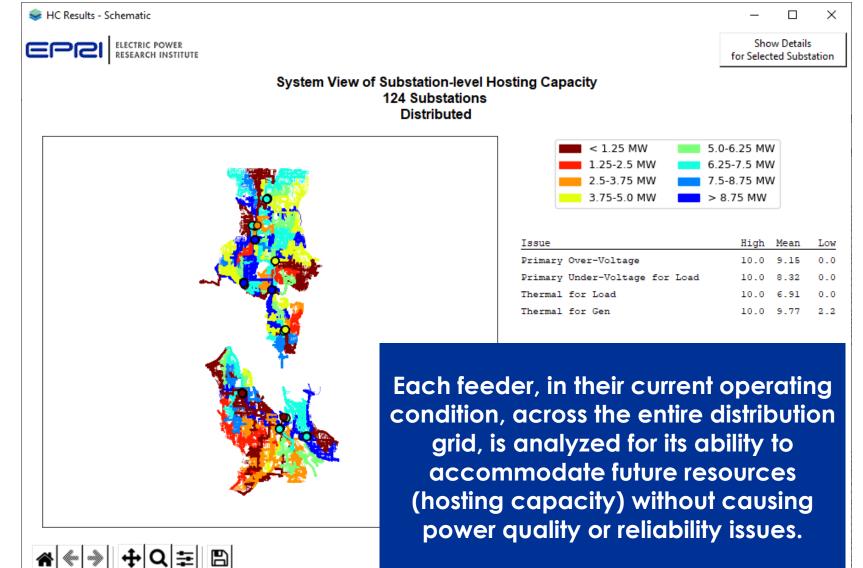
Incorporating Feedback Improves the Reliability of Final Portfolios, with changes in portfolios and costs of the system

Incorporating new economic and reliability-driven system upgrade options in the capacity expansion planning step can align final resource portfolios with expected system conditions more closely


Final Portfolio Transmission Upgrades

Transmission upgrades under the Decarbonization scenario are slightly lower than under the Reference Scenario (16.4 vs. 15.6 GW, respectively) and concentrated between fewer zones primarily due to the widespread deployment of storage.

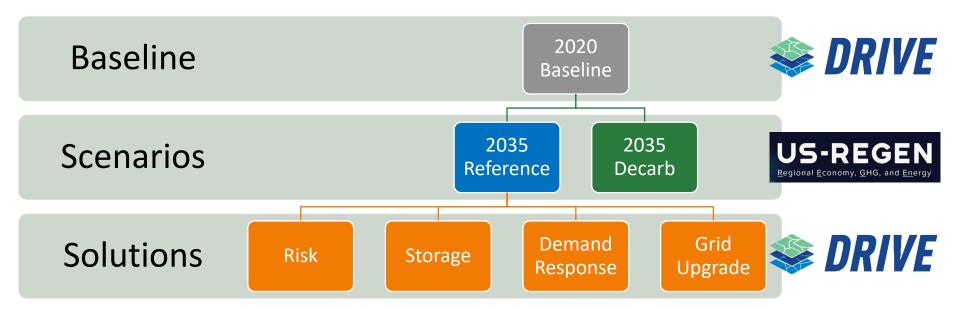
Decarbonization Scenario Generation Capacity Changes With and Without Tx Upgrades



In the Decarbonization Scenario, new transmission drives additional regional variation in optimal generation capacities across a wider range of technologies and NY zones.

EPRI

Baseline Hosting Capacity


- Proxy system used for distribution analysis
- Baseline distribution grid
 - 124 feeders
 - 11 substations
 - 1.25 GW peak load
- Scaled to approximate New York study area

Distribution Analysis Design

Wide-Area Distribution Assessment (WADA)

- Baseline hosting capacity assessment *Identify distribution grid's ability to accommodate future load/generation*
- Scenario development Leverage regional forecast and apply appropriately to the distribution grid to identify which feeders are constrained to projected growth
- Integration solutions Identify valid mitigation options and costs for currently constrained feeders
- Iterate via ISSP Process

Inputs: Baseline Dx grid model, ISSP scenario forecasts, ISSP study plan solutions to examine Outputs: Optimal Dx solutions, Iterate across ISSP

EPRI

Summary of Distribution Analysis

Reference Scenario

- Violations
 - 16% of feeders with violations from reference load/gen growth
- Solutions
 - Grid solutions are the costliest¹ on Dx
 - Risk is the cheapest analyzed solution
 - Further iteration across ISSP is necessary to optimize solutions across the entire grid

¹Grid costs do not account for stacked benefits from additional substation capacity. ²Decarbonization scenario costs to not account for added environmental value. ³Communication and control management costs not considered.

	Risk	Storage ²		Demand Response ²		Grid Upgrade
	Capital	Capital	Annual	Capital	Annual	Capital
Total \$	\$ 10 M	\$ 12 M	\$ 303 k	\$ 40 M	\$ 9.5 M	\$ 126 M
			per year		per year	

Decarbonization Scenario

- Violations
 - 23% of feeders with violations from reference load/gen growth
- Solutions
 - All solutions are costlier³ in this scenario when not considering upstream value.
 - Risk is the cheapest analyzed solution
 - Further iteration across ISSP is necessary to optimize solutions across the entire grid
 - Optimizing across the entire grid will likely require a combination of solutions at the distribution level.

	Risk	Storage ²		Demand Response ²		Grid Upgrade	
	Capital	Capital	Annual	Capital	Annual	Capital	
Total \$	\$ 10 M	\$ 48.4 M	\$ 1.2 M	\$ 61 M	\$ 65.0 M	\$ 196 M	
			per year		per year		

Breadth and depth of solutions increase for the decarbonization scenario and creates impacts that further warrant iterative examination through the ISSP process.

Top 5 Lessons Learned from the NY Demonstration Study

١
)

Regional technology planning provides an informed "starting point" for detailed unit-level capacity expansion and grid operations analyses. It reduces potential to miss key technology solutions that may be beneficial for a specific system.

Nodal capacity expansion planning (vs. zonal) is important for integrated system planning; having sitespecific generators and co-optimized nodal transmission reinforcements allows a direct follow-on system cost and reliability evaluation.

Different methods for system cost & reliability analyses can lead to different, but complementary insights; a multi-step approach to testing potential deficiency of candidate resource portfolios can find robust solutions.

The link between production cost modeling scenarios and ac feasible power flow solutions is critical to identify potential network reliability issues when planning future resource portfolios.

Improving reliability does not de facto come at a higher cost. Economic transmission upgrades can offset higher fixed and other costs under certain conditions, and in cases result in lower total costs.

Publicly Available Deliverables Coming Soon – www.epri.com/issp

ISSP Framework, Case Study & Key Insights Existing Approaches for Integrated Planning: A Review of Recent Studies

A Brief Review of Select Existing Tools for Integrated Planning

Linking Capacity Expansion, Resource Adequacy, & Production Cost Modeling Tools Linking Power Flow Analysis Tools with Production Cost Modeling Tools

Distribution Planning Perspective in Integrated Planning

Integrated Planning Framework: A Distribution Perspective of Process, Capabilities, & Data

Together...Shaping the Future of Energy™