Weather Datasets for Power System Planning
Tutorial Session 1: 8:00 — 10:00

State of the Art in Datasets (20 min)
John Zack, MESO

Problems with Existing Datasets (20 min)
Justin Sharp, Research Leader IV, EPRI

Evaluation and Adjustments to the ERAS (20 min)
Jim Wilczak, Research Meteorologist, NOAA

Approaches to Historical Datasets — (1 hr)

CONUS404, A High-resolution Hydro-climate Dataset
Sue Haupt, Senior Scientist, NSF National Center for Atmospheric Research

Applying the WIND Toolkit and WTK-LED to Grid Integration
Luke Lavin, Researcher lll, NREL

Historical and Forward-Looking Datasets
Cameron Bracken, Earth Scientist, PNNL

10:00 a.m. —10:20 am
Break
Location: Foyer




Tutorial Session 2: 10:20 - Noon

Approaches to Forward Looking Datasets — (1 hr)

Energy Exascale Earth System Model
Robert Arthur, Staff Scientist, LLNL

Sup3rCC Dataset
Grant Buster, Data Scientist, NREL

Creating Hourly Weather Timeseries for Future Climates
David Larson, Technical Leader, Grid Ops & Planning, EPRI

Using the Data Properly — Example and Facilitated Discussion (40 min)

A Case Study

Josh Novacheck, Transmission Planning Engineer, NextEra Energy Resources;
Chair, ESIG System Planning Working Group

Facilitated Discussion
John Zack, MESO
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Overview

. Some History: Where have we come from?
] State of the Art in Three Areas

o Dataset Design/Production with Examples of Issues

o Dataset Evaluation/Validation

o Dataset Use






The State-of-the-Art: a Historical Perspective

United States - Wind Resource Map

d 1987 wind resource map

obased on wind @ 50m

ocreated by PNNL/NREL

U Method

osurface & rawinsonde wind

data

obasic elevation (power law

profile) & surface roughness

wind model

oterrain and land use/cover

data

oand (apparently) some

subjective adjustments

U Technology has
noticeably evolved!

*  Source: "Wind Energy
Resource Atlas of the
United States”, 1987

Wind Power Classification

Wind Rosource  Wind Powar Wind Spoed®  Wind Spead®
Power Potential De}:ﬂ'lv at50m at 50 m at50m
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1|2 Marginal 200- 300 56- 64 12.5-14.3
j===] 3 Fair 300- 400 8.4-7.0 14.3-16.7 U.S. Department of Energy
[l 4 Good 400 - 500 7.0- 7.5 15.7-16.8 National Renewable Energy Laboratory
5 Excellent 500 - 600 7.5-8.0 16.8-17.9 &
6 Outstanding 600- 800 8.0- 88 17.9-19.7 S5P o e
7 Superb 800-1600  8.8-11.1  19.7-24.8 # spj@=t
®Wind spoods are based on a Woibull k valuo of 2.0 b,

20-MAR.20001.1.5




Now back to 2024 ....

State-of-the-Art in Dataset

Design & Production

A time series of 3-D states of the past, current and future atmosphere.....



Overview of the Current World of
Datasets for Power System Planning = e

Data
Data

J Wide Range of Methods to Construct Datasets

o A few fundamental types of approaches

o Enormous number of significant variations within types

 Therefore: Wide Range of Datasets Exist = = . ...

Global Climate

FIMED Physics-

o Typically have very different attributes depending —_—
on how they were constructed

o Consistency of data attributes (e.g. spatial/temporal
correlations) between datasets should not be assumed

o Critical need to evaluate comparative performance
on parameters/scales important to specific
applications

Drownscaled,
Let’'s examine the key attributes of the fundamental types of approaches... {wmmcﬁw mm}




“Retrieved” Directly from High
Resolution Space-Time Measurements

Multi- Sensor Parameter

Examples: Satellite-based sensors, radar Avmospheric Data

Data
[ Pluses

o Closest data to direct measurements
o Minimal dependence on “models” & model biases

* “retrieval” model: measurements - desired variable

Historical Sensor
Data

Physics-based

* less assumptions than NWP-based models : _ Glcbel Cimate

FIXED Physics

D M i nuses |_ '..:.i'T - based (NWF)

o Only feasible for some variables/areas (e.g. solar) ——

Observation

o Does not assure realistic space-time correlations e
with other variables from other sensors/models

o Limited to Period of Record (PoR) of sensors

o Limited by sensor space-time resolution

“Training™
Data

o No forward-looking data (except Future = Past)
J Example: NSRDB




Physics-Based Models with

Little/No Sensor Data Input s o o
1 Pluses -
o Can simulate the past, current or future Data

o No intrinsic PoR limitations (computational cost
a factor for resolution/PoR length trade-offs)

o Physically consistent space-time relationships Gl lomte
among variables for past, present and future " b pos -

Model

(] Minuses

Retrieved
Obsarvaticn
Diataset

o Requires coupling with other components of earth-
atmosphere system (oceans, biosphere etc.)

o Model biases not constrained by observations —

(WP
A pplication- Diownscaling

o Model physics-formulation play a more critical role rlevan

“Training™
Data

o Assumptions needed for future values of key
parameters (greenhouse gases, land use changes) [ Dounscaled, J

d Example: the CMIP6 set of datasets

Application - Optimized/Customized
Diataset




Blend of Physics-based Model and
Sensor Data: Operational Analysis

Climate
Parameter
Data

Multi- Sensor
Atmospheric
Data

(J Pluses

o Ongoing upgrades to the latest technology in model
physics, data assimilation and computing power

o Real-time updates to the dataset (i.e. each day)

o Physically consistent space-time structures among all
variables to the limit of the resolution

Physics-based
Global Climate
i I FINED Physics- Madiel

D Mlnuses based (NWF)

Model

o Ongoing upgrades: system formulation changes over time

Retrieved
Obsarvaticn
Diataset

e Performance (e.g. biases) can change over time

o Assimilated data is limited to what is available and can be
processed in the operational window (i.e. not all ultimately
available data can be used)

o Period of record limited by life span of the modelling system =g
o No forward-looking data (except Future = Past / Trends) oas”
(J Example: HRRR analysis (a popular one!) { o Doumecsled, }
Application - Optimized/Customized

Designed to create 3-D initialization datasets for operational forecast models!




Blend of Physics-based Model

and Sensor Data: Reanalysis s S
Q Pluses -
o Unchanging physics-based model and data G Serser

assimilation system for full PoR
* More consistent biases?
o Longer PoR than operational datasets .

Assimilation

o Physically consistent space-time structures among Agoritm i
all variables to the limit of resolution —— i
Physics-based based (NWF
d Minuses =

Retrieved
Obsarvaticn
Diataset

o Data assimilation inputs change over time even though
model/DA system does not

Re-Analysis
Dataset

o System not updated to latest technology until an
entirely new dataset is created

o Resolution often limited to make it feasible to have long
PoR and global coverage ppiication-

relevant

“Training™

o No forward-looking data (except Future = Past / Trends) Data
d Examples: ERA5, MERRA-2 [ _— ]

Bias-Comected and/or
Application - Optimized/Customized
Dataset




Secondary Modeling:

Downscaling, Bias Correction, etc. e
O Pluses |
o Could be physics-base (NWP) or statistical or both ot

o Can serve many purposes

 Bias correction with measurement data

« Downscaling using higher resolution local data —
(terrain, surface attributes etc.) Global Cite

Ops (Evahling) FIXED Physics Madel

th:i-:: pazed based (NWF
Future/Current
Climate Dataset

» Optimization for specific application variables -y

« Assimilate local data (e.g. mesonet data)
L Minuses

o Canresult in a swap of one set of biases for another

Retrieved
Obsarvaticn
Diataset

Re-Analysis
Dataset

o Could introduce dataset inconsistencies (such as using

different model configurations in different areas) Applcatin:
o Can require a lot of computation power depending on S
what is done and that could limit PoR and/or resolution
Dawnscaled,
o Constrained by PoR of parent dataset(s) P

Dataset

(d Example: NREL Wind Tool Kit



Emerging Technology:
Machine Learning-based -
Weather Prediction (ML-WP) Models o

Multi- Sensor

J What s it?

o A machine learning model (usually a deep neural network)
that is trained to emulate a numerical weather prediction
modeling system (essentially it learns the physics!)

Currently trained mostly on analysis/reanalysis datasets _' m;’t'»lcnm

Traininfq process is computationalg{ intensive but forecast
production is much faster than traditional NWP models

o Not addressing data assimilation YET L
 Potential Benefits i

““““

o Could replace the traditional NWP components of the database B W
creation systems with a much more computationally efficient
alternative

.*
.
.
.
.
.
.
.
.
.
.*
.

.

.
““

..

o Potential to make production of much higher space-time e
resolution long-term datasets computationally feasible

Already in experimental
o Could implicitly minimize many physics-based model biases

_ ] _ : operational forecast production
since trained on analysis/reanalysis or (maybe in the future) at some forecast centers
pure observational datasets (e.g. ECMWF)



Some Examples of Not-so-obvious Dataset Issues

1 ERAS used as an example since it is widely
used and regarded as one of the best datasets

Renewable Energy
Renewable Energy
Volume 126, October 2018, Pages 322-331 L

O But all datasets have issues related to how
they are constructed ERA5: The new champion of wind power

0 Some comparisons of ERA5 to HRRR modelling?

Jon Olauson ° 0 =

First impression of strengths and weaknesses of the ERAS dataset
4 Strengths

o Based on a well-known operational data-assimilation and forecast system (ECMWF) with
demonstrated very high-quality (best in the world?) forecast performance

o High vertical resolution: 137 levels for sfc to 80 km; (20m to 40m vertical resolution below 300 m)
o Long period of record and routinely extended: In its 85t year — 1940 to present
o Assimilates large archive of historical atmospheric sensor data

J Weaknesses

o Relatively spatial course horizontal resolution (~ 0.28 degree lat/lon or ~31 km)
o 1-hr data intervals



The Example Venue: Offshore Mid-Atlantic

Average (m/s) 20230101 to 20230131

O Example is focused on a US DOE
offshore development area (OCS-A-
0538) off the coast of New Jersey

0 A State of NY agency (NYSERDA)  /yz=%" | NYSERDALidar
operated 3 lidar sites near this location ~ wx- > ) .= | Hudson North
d Off-shore area ...so complex terrain and Z48n 20
other land surface attributes not o B L N
expected to be an Issue (A5 Jan 2028 AVgC0M WingiSpeEd




Typical dataset evaluation...

Hudson North Hourly Average Wind Speed

%0 | R N L L
4 Typical analysis looks at standard metrics such 1 crns avgs0010n
as Bias, MAE, RMSE, and correlation between | e
measured and simulated data = Az 1 oz
1 ERAS5 160 m wind speed data evaluated with g7 -
hourly average (+/- 30 mins) “Hudson North” Lidar 5
measurements over a ~ 2-yr period 3
O Analysis indicates fairly good performance 2 B
oR2 of about 0.90 =
oBias (ERAS too low): -0.83 m/s =
oMAE: 1.34 m/s <
oSimilar performance results at other nearby T R
measurement sites

° e I T

0 10 20 30 40

Lidar Wind Speed (m/s)

But among the list of known problems listed on the ERAS web page....

8. ERADL diurnal cycle for near surface winds: the hourly data reveals a mismatch in the analysed near surface wind speed between the end of one assimilation cycle and the
beginning of the next (which occurs at 9:00 - 10:00 and 21:00 - 22:00 UTC). This problem mostly occurs in low latitude oceanic regions, though it can also be seen over
Europe and the USA. We cannot rectify this problem in the analyses. The forecast near surface winds show much better agreement between the assimilation cycles, at



Example Issue: Impact of data assimilation

0O The ERAS data was created with a 4-D-Var Data ASS|m_|Iat|on Period Transition Times

DA scheme using two 12-hr data
assimilation cycles per day

AVG of ERA5 I?ata for 1-hr Abs Wihd Change (m/s)

Peripd:2000 to p023 DGS-A-0538

Dec

Nov

O To see impact examine the average

absolute value of the 1-hr wind speed Oct
change by month and time of day Sep
 Larger average changes occur at the S — 1

transition time between data assimilation Jun
periods (0500 EST and 1700 EST) May

O Impact varies substantially by time of year Mar

Feb +

O Therefore, ramp event analysis with the
raw ERAS5 data is suspect (at least in some W s s e w2 D

locations at some times of the year) Hour Ending (EST)
24-year (2000-2023) ERAS5 Average 1-h Absolute

Wind Speed Change by Month and Hour of the Day



A Closer Look at the ERAS Data Assimilation (DA) Issues

0 160m ERAS Wind Speed Bias (m/s) for period of Hudson North Lidar data (8/12/19 - 9/19/21)

Hudson North Wind Speed Bias

« Data Assimilation reduces bias by 2"‘9‘”’2”1
end of each cycle

Wind_Speed_160m: ERAS - Lidar

—~ 1o Start DA Cycle
%)
Overall period bias = S 08 End DA Cycle
-0.83 m/s g i‘; 0.4
T Noon
11 0
o -0.4
08 08
* Physics-based (NWP)-model bias is ... Start DA Cycle

most evident at the start of the cycle

04 1+ ENdDACycle
02
01 -2 1

MN

82019 1172019 2/2020 5/2020 §/2020 11/2020 2/2021 5/2021 8/2021

Month



ERAS Reanalysis vs HRRR Analysis
Standard Metrics for 160 m @ Hudson North 8/12/19 — 9/19/21

Hudson North Hourly Average Wind Speed Hudson North Hourly Average Wind Speed
Based on Wind_Sneed_|1 g0m 17041| of 18480 Possible HourT: 8/12/2019 to 919/2021 Based on Wmd_Speed_|1 60m 15924| of 18480 Possible HUur\s: 8/12/2019 to 9/19/2021
40 1 1 1 1 1 1 1 1 | | AQ 1 1 1 1 | 1 | | | |
1 ERA5 Avg:9.306103 B|aS = _084 B | HRRR Avg:9.311527 B|aS = _082 B
— Lidar Avg:10.145639 ~ — Lidar Avg:10.132811 . -
R2 :0.904928 — 0. —_
MAE = 1.34 e osnizz MAE =1.54
’J)‘ E MAE :1.33612 n ’Jf e MAE :1.53704 - T N
~ RMSE :1.79928 Lo | — RMSE :2.01355 L |
E ' E
i®) o
] ()
® B () B
Q. L o B
) B )
© Ne] B
£ i £ -
Ip]
< &
o B oc -
L N B
I

Lidar Wind Speed (m/s) Lidar Wind Speed (m/s)
Fairly similar... maybe ERAS appears to be slightly better



AVG of ERA5 Data: 1-hr Abs Wind Change (m/s)

Dec

Nov

Oct

1-hr 160 m Wind Speed Variability:
ERAS vs HRRR: 2018 — 2023 ( 6 years)

Overall 1-hr scale wind variability is higher in

HRRR dataset (~ 3 km grid vs ~ 31 km grid)
AVG of HRRR Data: 1-hr Abs Wind Change (m/s)

Peripd 20118 fo 033 ugson North Doc Peripd2018102023 | | | | | | | | | | fudson North

Nov — —

Oct — —
Scp i - ’
Aug —

Jul — » -

Month

Jun
May

Apr

Feb

}

[ I O O O O I O R
(

0 11 Noon 13 14 15 16 17 18 19 20 21 22 23

Hour Ending (EST) o Hour Ending (EST)
Large DA-driven discontinuity in 1-hr wind

Jan 1
g8 9 1

M_
w —
s —
n —
= —

MN 1 2 3 4 5 6 7 8 9 10 1lNoonl3 14 15 16 17 18 19 20 21 22 23

speed changes not evident in HRRR dataset

1.7
1.6
1.5
1.4
1.3
1.2
1.1

0.9
0.8
0.7
0.6
0.5
0.4



But the HRRR Analysis has Other Issues

Upgrade from HRRR v3 to HRRR v4 occurred on 12/2/2020

8/2019 to 9/2021
23
22
21

Hour (EST)

20
19
18
17
16
15
14
13

Noon

11
10
09
08
07
06
05
04
03

1.6
1.2
0.8
0.4

-0.4
-0.8
-1.2
-1.6

02
01
MN

/2019

11/2019 2/2020 5/2020 8/2020 11202 22021 5/2021 8/202]

HRRRv3  Month  LipRR v4

HRRR v4



But ERAS DA issues go beyond the ramp rates....

O Looking at (2000-2023) — (1940-1969) average
difference by month and hour of the day
suggests this trend is likely related to DA effects

_ _ Diff of Averages for SPDm/s at 160m
Variable: Wlnd_Speed_1 60m 24 Yrs End 2023 - 30 Yrs End 1969 Location: ATTE1

Period:1/1 to 12/31 Attentive Energy 1(OCS-A-0538)
13.0 L | | |

U An 84-year time series suggests a decrease in
wind speed in recent years...

12.0 ; N = :
; ; § Jul
1.0 — PP LL > Jun
] 1 940_1 969 2000'2023 PP -

10.0

@\ 80 t 5 Highest Speed Years 5 Lowest Speed Years ?
E o hofiev ol
g o m ma T
D_ 1 1947 9.88 2015 8.81 . . . . .
Do i « Data assimilation impact is stronger after 1980 ...
I I I | I I [l [l [l ']
oo much more data to assimilate (satellite, aircraft etc.)

Year .. SO an apparent trend appears



dTake-away: Deep dataset evaluation is critical to understanding
what issues are (sometimes obscurely) embedded in the dataset
one is using

State-of-the-Art Iin

Dataset Evaluation




Some Points on the Current Status of Dataset Evaluation

1 Users always say they want more accurate data

oBut what does that mean?
oMore accurate representation of dataset attributes that impact their applications/decisions?

oOr lower bias/MAE/RMSE? Other?

1 Evaluations typically done with standard generic metrics at the scale of
whatever measurement (“actuals”) data is available

O Importance of different dataset attributes is use-case dependent

1 No standard (protocol, metrics etc.) for intercomparison of datasets exists

d Important current needs

odefine what “users” mean by “more accurate” data
oa standard reference metric set based on a range of typical use cases

oobtain use of a larger volume of power system-relevant meteorology-related data
a lot of data is not available to the dataset evaluation process now because of proprietary restrictions



State-of-the-Art In

Dataset Use



Status of Dataset Use

O Knowledge of what the energy system community is using and what they are doing with them is very limited
O NREL recently conducted a survey of users

o  Results courtesy of Caroline Draxl and Luke Lavin at NREL
o  Heavily weighted to National Lab users

O Very few (if any) other attempts to gather this type of information have occurred

Which sector are you in? What atmospheric data set are you using for your grid integration studies?

14 responses
15 responses

WTK 8 (57.1%)

ERA5 7 (50%)
MERRA-2 3 (21.4%)
HRRR -8 (57.1%)

CONUS 404 2 (14.3%)

10 (71.4%

INationaI Solar Radiation Datab... )

L 6 (42.9%)
More 0 2 4 6 8 10
CMIP6 data, Multi-sensor precip data, SPC storm events database, etc
common
Sta nd a rd Daymet, Sup3rCC, various GCM datasets
Academia E3SM
O for solar ,
@ Industry than wind
Nat|0na| Lab IM3 Thermodynamic Global Warming dataset (dynamically downscaled ERA5 12km)

. Other Re-Explorer




User Validation and Quality Control Approaches
User Responses to NREL Survey

We use a large ensemble. Usually a bigger ensemble for variables with more uncertainties.
Scaling the 8760 up/down by a predetermined amount.

Regular evaluation of model errors with observations, and consistency of time-lagged predictions

using a spread of different representative days Com pa re to
Deep uncertainty with climate ensembles Obse rvathnS

Using multi-year averages, Calculating seasonal statistics and variability

Mainly through comparison to observations Statistical

Poorly. But we also try to include historical actual operating data where available and show results via MethOdS
modeled and actual weather data.

Usually it's not taken into account EXpert
Estimating errors by comparison with observed wind/irradiance, sensitivity tests. J udgement

Not currently modeling

Monte Carlo approach Nor?

Not accounting for uncertainty

not directly quantifying this

Implied State of the Art: No explicit or de facto/implicit validation or

data use standards exist. User validation for input data for their
applications is often minimal, subjective or non-existent




Questions ... ?

Thank you for your
attention

Dr. John W. Zack

Principal

MESO, Inc.

Troy, NY
jzack@meso.com
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