
Resource Adequacy for a Decarbonized Future

ESIG Webinar

EPRI Transmission Operations and Planning April 26, 2023

What is a Resource Adequacy (RA) Risk Assessment?

Can the resource mix meet projected customer energy needs at all times?

Traditional Modeling Process

Probabilistic across <u>expected conditions</u> with <u>average</u> generator outage rates

Traditional Metric

Loss of Load Expectation (LOLE): <u>Expected number of days</u> per year with insufficient capacity to meet load

Traditional Criteria

LOLE less than 1 day every 10 years (LOLE < 0.1)

Resource Adequacy Initiative

Scope and Deliverables

25+ Participants

RA Process

- Recommended Metrics and Criteria
- Future Scenario
 Database and Tool

Models and Data

- Emerging Resource & Demand Side Models
- Model Data
 Development Tools

Analysis Tools

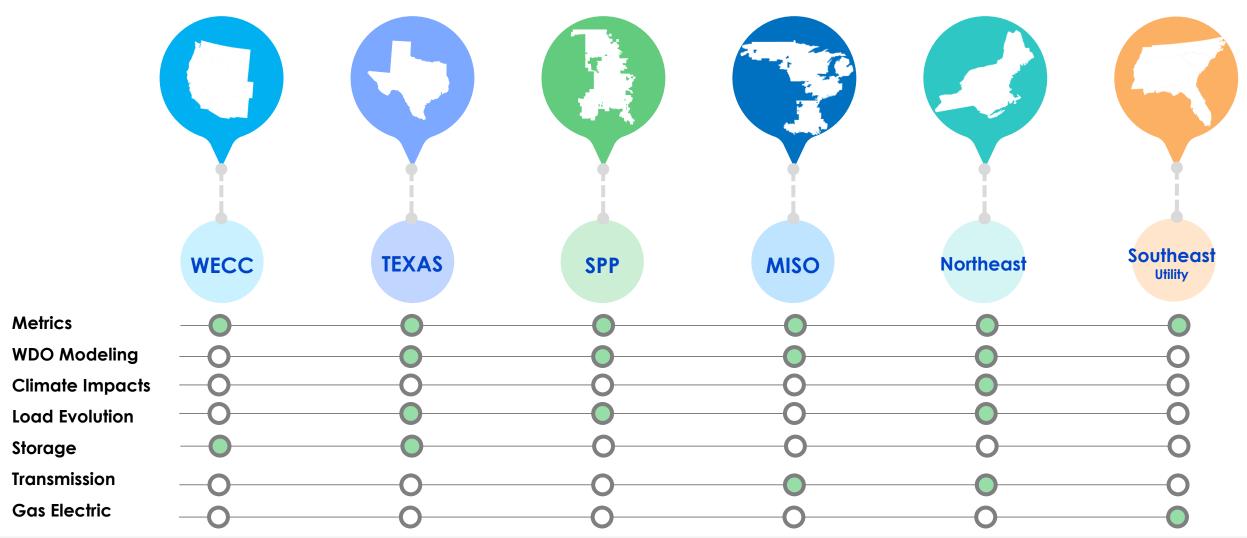
- Existing RA Tool Capabilities
- New Algorithms and open-source code

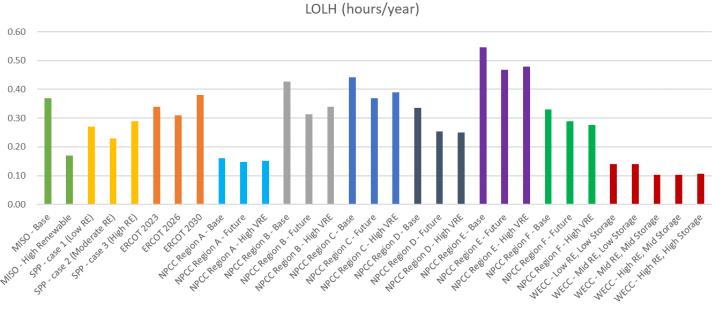
Evaluation of existing and development of new capabilities based on 4-6 regional RA case studies covering differing RA issues and tools.

Reports and workshops to be conducted to disseminate results and to promote broad adoption in commercial tools.

aps

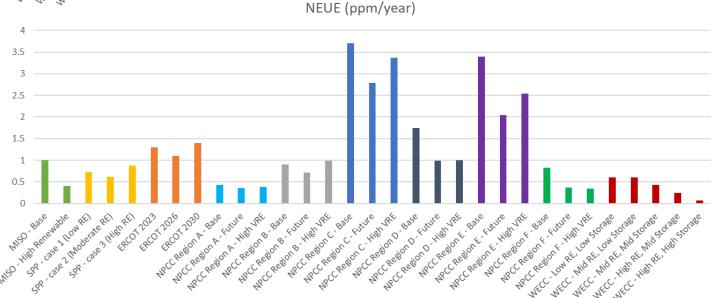
NARUC, NREL, ESIG, GridPath, RROs, DOE, ISOs/RTOs, G-PST, Consultants, Universities, etc.)





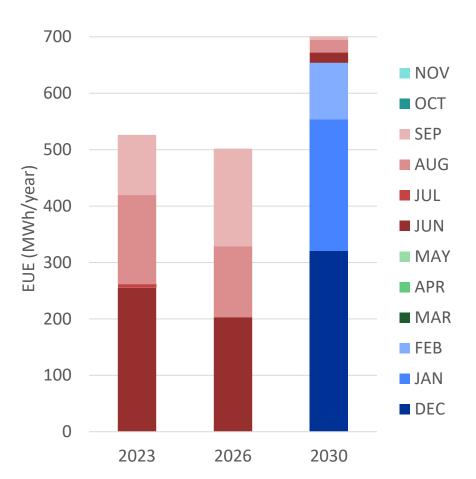
Foundational Case Studies

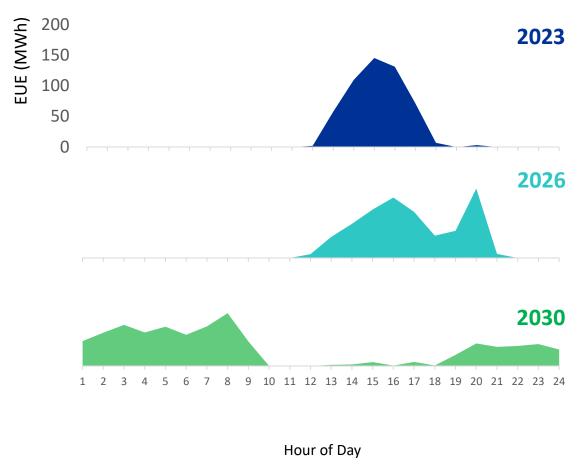
Six case studies of different views of future systems, in different climate and electrification contexts, used to assess a range of key questions and study tool capabilities.



Avoid relying on a single metric

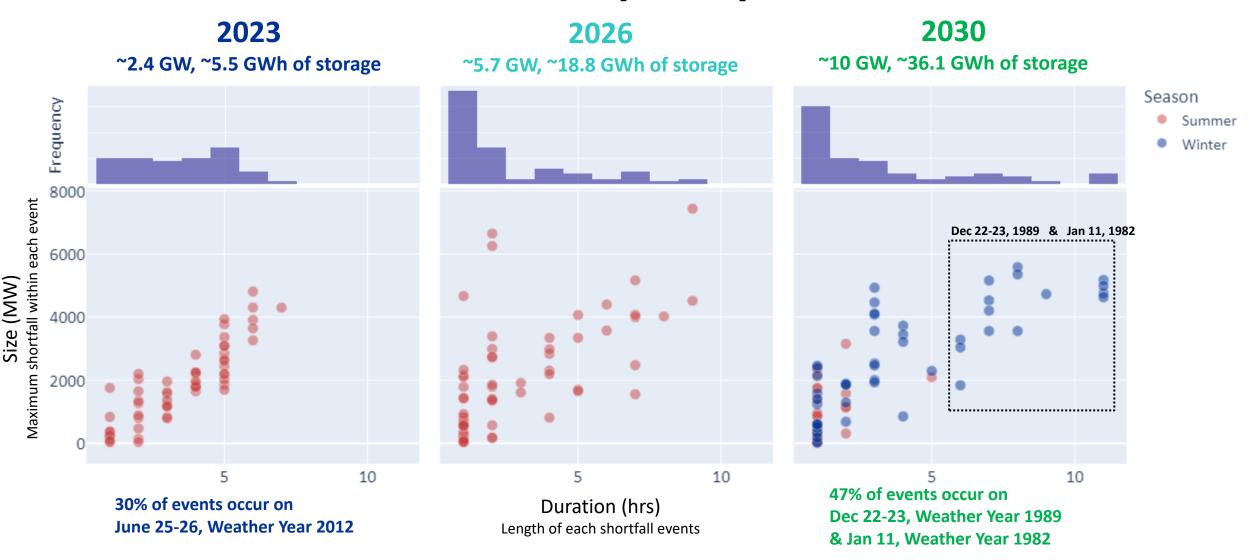
LOLE gives information of the expected number of days when a loss of load occurs but doesn't give information on the magnitude of that load loss.


All case study portfolios shown here were brought to a LOLE of 0.1 days/year, and yet show different results for LOLH and EUE.



Better leverage existing metrics

Unserved Energy by Month


Unserved Energy by Hour of Day

ERCOT case study results

Existing metrics can be reported by hour of day or by month to provide additional information.

Characterize event size, frequency, and duration

As system transitions to higher renewable and increased storage, duration of shortfalls get longer as the system becomes more energy limited ERCOT case study results

Resource Models: Demand Flexibility Potential Value

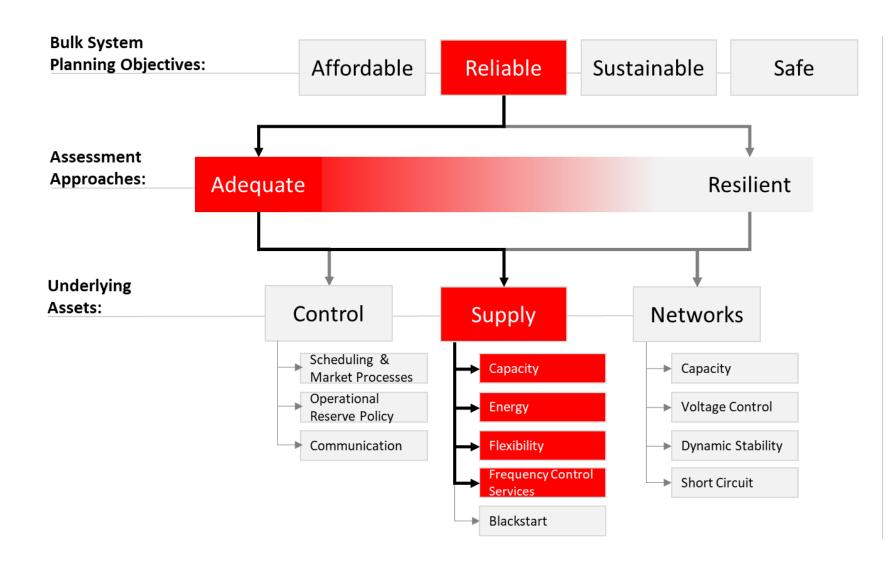
Potential reduction in LOLE from 900 MW (3% peak demand) of various distributed resource types (technology and tariff) for specific utility system

EPRI RAI provides methodology for modeling flexible demand contributions to RA

Examine consequences of extremes

- With the same expected LOLE, replication results vary. The highest result from all replications varies from 5.89 days/year to 0.3 days/year.
- When high top replications are observed, the lower replications have much lower loss of load than the rest.
- P50 for Region B in the base case is down at 0.01 days/year where Region A VRE is at the average LOLE of 0.1 days/year.

LOLE95 is already in use in Belgium


Daily LOLE [days/year]											
Region	Case	Average LOLE	p50	p90	p95	p99	Тор				
Α	Base	0.10	0.10	0.17	0.18	0.24	0.41				
	Future	0.10	0.09	0.17	0.17	0.19	0.34				
	VRE	0.10	0.10	0.18	0.18	0.21	0.30				
В	Base	0.10	0.01	0.22	0.46	1.50	5.89				
	Future	0.10	0.07	0.25	0.37	0.69	1.38				
	VRE	0.10	0.07	0.21	0.36	0.66	1.50				
С	Base	0.10	0.08	0.19	0.21	0.29	0.51				
	Future	0.10	0.08	0.18	0.21	0.25	0.38				
	VRE	0.10	0.09	0.18	0.21	0.26	0.41				
D	Base	0.10	0.09	0.17	0.19	0.25	0.44				
	Future	0.10	0.06	0.22	0.29	0.40	0.60				
	VRE	0.10	0.09	0.19	0.31	0.42	0.68				
E	Base	0.10	0.09	0.18	0.25	0.41	0.78				
	Future	0.10	0.06	0.22	0.30	0.60	1.26				
	VRE	0.10	0.07	0.20	0.29	0.59	1.14				
F	Base	0.10	0.10	0.16	0.19	0.25	0.44				
	Future	0.10	0.06	0.19	0.25	0.41	0.75				
	VRE	0.10	0.06	0.19	0.22	0.44	0.76				

Northeast case study results

For a same expected LOLE of 0.1 days/year, significant differences between cases and regions exist when considering percentile results.

Stress testing: Adequacy and Resilience

Adequate

Philosophy: Determine the expected performance of a system over the range of foreseeable conditions.

Assessment Metrics:

Expected frequency, duration, energy lost margins, pass/fail tests

Resilient

Philosophy: Identify how a system anticipates, absorbs, adapts to, and/or rapidly recovers from extreme scenarios

Assessment Metrics:

An array of case specific metrics that can include load and energy not served.

Stress Test Study Approach

High Level Overview

Project Future Weather

Historical weather overlaid on climate model projections

Identify High Risk Events

Screen weather for periods of potential high risk

Event Scenarios

Identify potential non-weather scenarios

Weather Contages Coutages Cout

Simulate outages of thermal plant

Operational Simulation

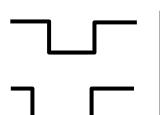
Simulate how the system operates through events

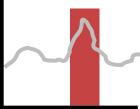
Power System Information

e.g. generators, demand

Weather Data

Historical & Climate Model




Cold Snap

Heatwave

Asset Risk Profiles

e.g. normal operating ranges

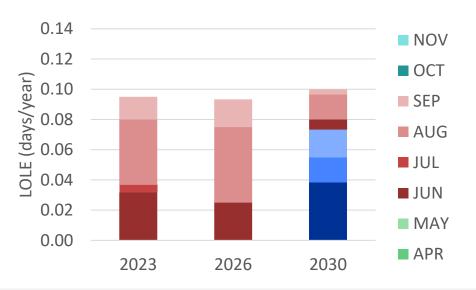
Severity Scale

- New tool to support adequacy assessment
- Case studies will benchmark and provide insight into value of tool
- Beyond using different metrics, allows for greater insight into challenges future system will face

C	Category	Description	lmpact Economic	Reliability	Public Safety	Operational Actions	Condition	
	Category 1	Region dependent on imports to meet operating reserve requirement	Low	Med	Low	Deployment of demand response	In-region resources cannot meet demand + reserve requirement	
	Category 2	All available resources cannot meet load and operating reserve requirement	Med	Med	Low	EEA1, public conservation	All available resources cannot meet demand + reserve requirement	
	Category 3	Minor firm load interruption in progress	Med	High	Med	EEA2, operational reserve deficiency, CVR	Involuntary load shedding is experienced (not greater than 5% in any interval)	
	Category 4	Significant firm Load interruption in progress	High	V. High	High	EEA3, active load shedding	Involuntary load shedding is experienced (not greater than 10% in any interval)	
	Category 5	Extensive firm load interruption with catastrophic effect	V. High	V. High	V. High	Rolling Load Shedding	Involuntary load shedding is experienced (greater than 10% in any interval)	

Risk is shifting seasonally, from summer to winter

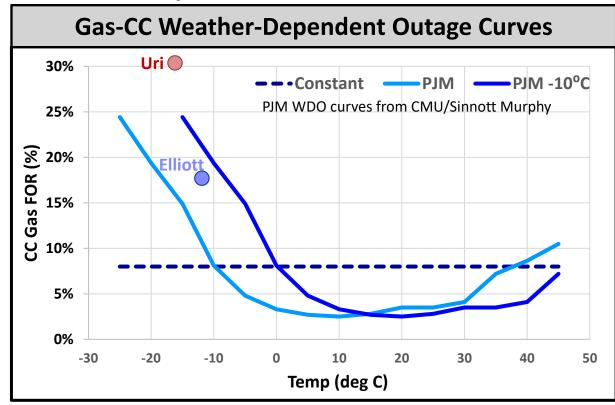
Load (% of P50 Peak)


ERCOT case study results


Methodology

3 study years (2023, 2026, 2030) with increasing variable renewables, storage, and thermal retirements

40 years of time synchronized weather data for load, solar, and wind profiles


each study year evaluated to ~0.1 days/year LOLE for comparison purposes

Resource Models: Weather Dependent Outages (WDO)

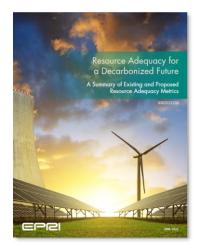
ERCOT case study results

ERCOT Case Study: WDO Impacts 0.9 0.821 ■ Winter ■ Spring ■ Summer ■ Fall 0.8 0.7 COLE (dy/yr) 0.6 0.7 0.3 0.3 0.525 0.186 0.2 0.1 Unconditional PJM PJM -10°C **Outage Model Weather Dependent Outage Model**

Extreme temperature impacts generator forced outage rates

Including WDO in RA risk assessment exposes additional risk

EPRI RAI provides methodology for creating generation WDO curves, modeling guidance (renewables, storage, and, transmission, et. al.), and guidance on data and application in tools


EPRI initiative – Where can I find additional information?

Available today:

- Website is already live, with initial set of reports
- Will be adding material to this as it gets published
- Tools and potentially data also housed here

Available soon:

- In-depth technical reports:
 - Data guidelines
 - Metrics and criteria recommendations
 - Survey of tool capabilities,
 - Scenario generation guidelines
 - Reference of model options by technology type
- Summary papers and videos

www.epri.com/resource-adequacy

Resource Adequacy

Decarbonization efforts are expected to drive fundamental change in electricity supply with significantly higher levels of variable and energy-imited resources and decreasing levels of dispatchable synchronous generation. A lower emission electricity sector will also be foundational for decarbonizing other energy sectors through electricity sector will also the transport, buildings, and industry sectors. With more of the energy economy dependent on the electricity sector, the reliability and resiliency of the supply of electricity will need to increase to meet societal expectations.

The initiative is focused on four key areas

- Developing metrics, criteria, and scenarios to assess risk and guide investment decisions;
- Creating models and data to characterize how system resources perform under operating conditions:
- Accelerating the development of resource adequacy assessment tools to advance new solutions benefiting society, and
- Demonstrating the value of new approaches through "real world" applications across diverse regions to quide employment of new processes.

Resource Adequacy Research

Resource Adequacy for a
Decarbonized Future

A key capability of EPRI's Resource Adequacy

Resource Adequacy for a
Decarbonized Future: A...
This report summarizes existing and proposed

Exploring the Impacts of Extreme Events, Natural Gas Fu...
This white paper focuses on planning for

