Value of GFM DER in High Penetration Scenarios

Deepak Ramasubramanian (<u>dramasubramanian@epri.com</u>) Wenzong Wang (<u>wwang@epri.com</u>)

ESIG Fall 2023 Technical Workshop San Diego, CA October 24, 2023

 Image: market in the image: market

Acknowledgement and Disclaimer

 The material covered in this tutorial is based on work supported in-part by EPRI Program 173, EPRI Program 174, and U.S.
 Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technologies Office Award Numbers DE-EE0008776, DE-EE0009019, DE-EE0009025, DE-EE0002437.

The views expressed herein do not necessarily represent the views of the U.S. Department of Energy or the United States Government

Overview of EPRI's GFM research

EPRI

Terminology for evolution of services from IBRs

Questions being evaluated

• How does transmission system stability get impacted by DERs?

What role does load dynamics play?

If DERs face stability challenges, can it be effectively resolved by transmission-connected enhanced/future IBR resources alone?

Will increased robustness of DER become necessary in power systems with high renewable penetrations?

Impact of DER and load on microcosm Tx dynamics

- Four IBR configuration scenarios are studied:
 - S1 -> Only IBRs 1, 2, 3 as conventional IBRs
 - S2 -> Only IBRs 1,2, 3 as enhanced IBRs
 - S3 -> S1 + IBR 4 as enhanced IBR
 - S4 -> S2 + IBR 4 as enhanced IBR

- Three load scenarios are studied:
 - LoadPQ -> Static constant PQ
 - LoadIPZQ –> Static constant I and Z
 - LoadDyn –> Aggregated composite feeder

References:

IBR model: <u>https://www.epri.com/research/products/00000003002025889</u> [Public]

Aggregate feeder: https://www.epri.com/research/products/00000003002021940 [Public]

Importance of distribution system dynamics

Trip of both synchronous machines to form 100% IBR network

- Using static models to represent net load in distribution can provide either very conservative or very optimistic results
- Detailed distribution network representation is not required
 - Dynamic behavior should however be realistically represented

Impact of DER on real utility transmission network

- Portion of network with composite active distribution feeder (ADF)
- Transmission connected resource
 - Conventional IBRs
- Distribution connected resource
 - Legacy IBR/DER

References:

- Ali Arzani, Deepak Ramasubramanian, Parag Mitra, "Impact of Dynamic Load on IBR-Based Transmission-Distribution Network Operation: A Case Study," IEEE ISGT North America 2024 [under review]
- Yi Zhou, Deepak Ramasubramanian, Parag Mitra, Manjula Dewadasa1, Sachin Goyal, "Impact of Distributed Photovoltaic System on System Strength," 2023 CIGRE Cairns Symposium, Cairns, Australia

EPRI

DER Impact

- Increase in DER can cause instability with reduction of system strength
- Increase in dynamic load characteristics improves stability
- DER and load dynamic characteristics have varied impact

References:

 Ali Arzani, Deepak Ramasubramanian, Parag Mitra, "Impact of Dynamic Load on IBR-Based Transmission-Distribution Network Operation: A Case Study," IEEE ISGT North America 2024 [under review]

													ses
		О	-10	-20	-30	-40	-50	-60	-70	-80	-90	le Ca N_M	e Ca R M
DER_MW GrossLD_605	IM_MW share (%)											Unstab per II	Unstab
0	0											6	
	10.4											6	27
	20.8											6	
	31.2											5	
	41.6											4	
Ŷ	0											6	27
	10.4											6	
	20.8											5	
	31.2											5	
	41.6											5	
	0											6	24
NO NO	10.4											5	
	20.8											5	
	31.2											4	
	41.6											4	
~ ⁵⁰	0											6	22
	10.4											5	
	20.8											4	
	31.2											4	
	41.6											3	
B	0											6	20
	10.4											5	
	20.8											4	
	31.2											3	
	41.6											2	
	0											6	20
Þ	10.4											5	
	20.8											4	
	31.2											3	
	41.6											2	
-AD	0											7	23
	10.4											6	
	20.8											5	
	31.2											3	
ŵ	41.6											2	26
	0											8	
	10.4											6	
	20.8											5	
	31.2											4	
	41.6											3	
AD ^O	0											8	31
	10.4												
	20.8											6	
	31.2											5	
								the second se					

Are Transmission-Connected IBRs Sufficient for System Stability with High Renewable Penetration?

Case study: 67% IBR penetration in transmission

System performance with increased IBR penetration

- Oscillations with insufficient damping occurs after disconnecting the 100 MVA SG
- This could indicate that the remaining SG is not able to provide sufficient grid strength to accommodate the increased penetration of IBR
 - Additional interesting insight on this during ESIG Services Task Force meeting on Thursday

How much Tx-connected future IBR BESS capacity is needed to stabilize the system?

Future IBR

All grid services (GFM)

- The transmission system can be stabilized by Tx-connected enhanced/future BESS
- The BESS capacity needed to stabilize the system depends on the location

References:

• Wenzong Wang, Deepak Ramasubramanian, Aminul Huque, Arun Kannan, and Diana Strauss-Mincu, "Benefit of Fast Reactive Power Response from Inverters in Weak Distribution Systems," 2022 IEEE Rural Electric Power Conference, Savannah, GA, USA, 2022

Will the same BESS solutions work when additional large DER is connected in Dx?

No grid services (GFL)

Legacy IBR	
Conventional IBR	
Enhanced IBR	•
Future IBR	

- The Tx-connected BESS capacity required to stabilize both Tx and Dx is much greater than the capacity required to stabilize Tx itself
- Increasing hosting capacity of renewable DERs is critical to reach net-zero emissions but relying solely on Tx-connected resources may not be an efficient solution

Can Enhanced/Future DER Share the Responsibility to Maintain System Stability?

Can enhanced/future IBR control bring more use cases for BESS in Dx grid-connected operation?

Real-world example of Distribution BESS in <u>Future IBR mode</u> under blue-sky scenarios

- 25 MW/38MWh/57.6MVA BESS connected to the 23 kV system
- The BESS inverter operates as a Future IBR under both grid-connected and islanded conditions
- The Future IBR is potentially also capable of blackstart and being the single balancing resource in the islanded system.

References

 "Analysis and Application of Grid-Forming Battery Energy Storage System for Reliability Improvement on the Eversource Distribution System in Cape Cod Massachusetts," 2022 Grid of the Future Symposium

Simulation case study to evaluate the impact of BESS

benefit system stability by operating in which mode?

EPRI

Future IBR

All grid services (GFM)

Example results – beneficial impact of enhanced/future BESS on

- Operating the BESS in enhanced/future mode can stabilize the conventional PV for the 0.1s fault event considered
- Compared to Tx-connected BESS, <u>less BESS</u>
 <u>capacity</u> is needed in the Dx to stabilize the conventional DER

Summary

Conclusions based on simulation case studies

- High penetration of DERs/IBRs and retirement of SGs can cause instability in distribution systems and transmission networks
- Load dynamics are important to be considered in an appropriate manner
- Transmission connected enhanced/future IBRs can help increase distribution hosting capacity of DERs but the capacity required might be high (lower efficiency)
- Enhanced/future DER may be an effective way to
 - resolve the potential stability challenges in weak distribution grids and to increase hosting capacity
 - improve power quality of the distribution system

EPRI Annual grid forming inverter tutorial

Grid Forming Inverters

EPRI Tutorial

Deepak Ramasubramanian (<u>dramasubramanian@epri.com</u>) Wenzong Wang (<u>wwang@epri.com</u>) Aminul Huque (<u>mhuque@epri.com</u>) Evangelos Farantatos (<u>efarantatos@epri.com</u>)

August 14, 2023

У in f www.epri.com ∞

© 2023 Electric Power Research Institute, Inc. All rights reserved.

https://www.epri.com/research/products/00000003002028090 [Slides – Public]

Roadmap for adoption of enhanced/future IBRs

- Step wise approach to provide a more informed picture of:
 - required ability of IBRs in a future network,
 - the expected services that can be required from these devices
- Overall improvement in the stability, security, and reliability of the network.

https://www.epri.com/research/products/00000003002028365 [Public]

Together...Shaping the Future of Energy™