Grid-Forming Inverter-Based Resources Webinar

Export Stability: Comparing Grid-Following IBR, Grid-Forming IBR, and Synchronous Machines

Nick Miller, HickoryLedge LLC

Wednesday, October 13
Export from resource rich regions is critical

- Stability issues in the 1st line of challenges
- Transmission is and will be a critical resources
- We must use it to the utmost efficacy
IBR plants can be more stable than conventional synchronous generators.

Primary Cleared Fault
- Voltage recovery of wind farm is superior.
- 10 cycle grid fault

Delayed Clearing Fault
- Wind Farm Recovers
- Gas Turbine Trips on Loss-of-Synchronism
- Long Fault Typical of Remote Locations

I’ve been using this figure for close to 20 years!
The IBR plant is superior to the synchronous generator in terms of voltage recovery from a 10-cycle grid fault. Voltage recovery of the IBR plant is superior, while the synchronous generator swings dramatically. The figure shows the voltage recovery of the IBR plant and a synchronous generator for a 10-cycle grid fault.

Pre-disturbance

Synchronous Machine

Inverter-Based Generation

Equal Area Curve

PV/Nose Curve

Phasor Diagram
IBR plant is superior

Voltage recovery of the IBR plant is superior

a 10-cycle grid fault
10 cycle grid fault

Synchronous generator swings dramatically

Synchronous generator swings dramatically

Fault inception

Equal Area Curve

PV/Nose Curve

Phasor Diagram

Inverter-Based Generation
Voltage recovery of the IBR plant is superior

a 10-cycle grid fault

Synchronous generator swings dramatically

Immediately before Fault Clearing

Synchronous Machine

Inverter-Based Generation

Equal Area Curve

PV/Nose Curve

Phasor Diagram

Sending End Voltage – V_S (p.u.)

Power – P (MW)

Time (seconds)
Synchronous generator

Voltage recovery of the IBR plant is superior

Synchronous generator swings dramatically

Immediately after Fault Clearing

Equal Area Curve

PV/Nose Curve

Phasor Diagram

Inverter-Based Generation

Equal Area Curve

PV/Nose Curve

Phasor Diagram
Synchronous generator

Voltage recovery of the IBR plant is superior

a 10-cycle grid fault

Synchronous generator swings dramatically

Immediately after Fault Clearing

Equal Area Curve

PV/Nose Curve

Phasor Diagram

Inverter-Based Generation

Equal Area Curve

PV/Nose Curve

Phasor Diagram
eSCR (effective short circuit ratio) and beyond: basics

Short Circuit Ratio is a convenient way to talk about the strength of the grid, it’s not about faults

1. SCR Bigger X (more impedance) = weaker grid
2. Short circuit strength is the inverse of X
3. X gets bigger with distance
4. X gets smaller with more transmission; higher voltage ratings
5. “weak” is relative:
6. If the devices are big, i.e. “rating” is large, relative to the short circuit strength, the short circuit ratio is low, and grid is weak
7. There are several clever analytical techniques to calculate weighted/equivalent/composite/effective short circuit ratio.

- All things being equal, the lower the short circuit ratio, the harder it is to stay stable.
- All things are never equal.
eSCRs and beyond: Where is the power going?

- This isn’t getting much discussion (says Nick)
- Today’s Canaries are mostly exporting
- In future, some systems will have much more “local” consumption.

Note the absence of numbers: we (the industry) have not adequately explored this relationship.
Paradoxically: Grids are both stronger, but may be more brittle.

With SOA grid-following inverters, stability limits tend to be higher – that is good for reliability and economy.

But, when the grid fails, it may fail faster and with less warning.

We need better:

• Understanding
• WTG (and inverter) controls
• Simulation tools
• Predictive tools and metrics

Source: Miller; NREL/GE WWSIS – Low Levels of Synchronous Generation” December 2015
Pushing the limits out with Grid Following Inverters: today’s toolbox

• Better inverter controls. (“more robust controls”)
 • Grid following inverters have gotten spectacularly better for high penetration and weak grids in recent years. Tolerate lower eSCR
 • This trend of improvement will continue, though a degree of diminishing return is expected: The network “entitlement” can’t be exceeded

• Additional transmission (“more wires”).
 • New AC or DC lines
 • More power, additional circuits on existing right-of-way

• Synchronous condensers (“stiffer grid”)
 • Improve all aspects of eSCR. Watch for new stability problems.

• Grid Enhancing Technologies (“use the wires better”)
 • power flow control, dynamic line ratings, and topology optimization
 • Series and advanced compensation
GFM & Export: Our Theory

Potential Advantages for “Stability”

Very short time frames (<~0.1 sec):
• GFL closed-loop controls are challenged to maintain stability margin
• Synchronous machines have an inherent “open-loop” behavior that is stable

Longer time frames (> ~0.1 sec):
• GFL have developed advanced control strategies that can provide voltage regulation, active power response, transient stability, and damping that are as good or better than synchronous machines
• Synchronous machines may be subject to first-swing instability and may lack damping, some of which can be mitigated (for instance, PSS)

Can GFM offer better performance for exporting power from IBR rich resource areas?
Our Approach

Sending End

Generation Technologies Compared

HV Transmission System Representation

Mitigations Tested

Receiving End

Stimuli:
Fault-and-Clear,
Line Clearing Only

Underlying assumption:
The mid-point of transmission
tends to be the “soft” spot –
reinforcements here yield the
greatest benefit
Grid Strength Impact

- **GFL-IBR**
 - Soft Grid (SCR = 2.2)
 - Marginal Grid (SCR = 1.4)
 - Weak Grid (SCR = 1.1)

- **Synchronous Generator**

- **GFM-IBR**
 - GFM current moderate
GFM inverters show promise for being the “best of both worlds” for grid stability...many questions remain, especially: Is this observed GFM performance edge intrinsic or controls?

Whoa! Power angle curve and nose curve maxima still apply. (this calc of SCR based on MVA. MW based would show higher values)
Two distinct modes observed → GFL is interacting with the synchronous condenser, resulting in complex dynamics

1. **Voltage swings**, dominated by the control of GFL

2. **Power swings of the condenser**, dominated by electro-mechanical swings of synchronous condenser
Dynamics: SC + GFM

Consider the case: GFM + synchronous condenser

Voltage swings are much smaller relative to the GFL + SC case

Power swings of the condenser are roughly half the magnitude as the GFL + SC case

Simpler, sinusoidal dynamics \(\rightarrow\) GFM is more decoupled from synchronous condenser (less interaction)
Summary of Key Findings

Characterizing Resource Performance
• Sync machines and GFL can have similar stability limits for power transfer
• This GFM shows improved stability over both GFL and sync machines; GFM swings benign
• Sync machines are sensitive to fault duration; IBR are not → CCT may be a misleading stability metric for IBR
• GFM shows similar step characteristics to synchronous machines, but behavior in-limit is different. High current rating not needed for good stability performance.

Characterizing Network Mitigations
• All technologies are sensitive to grid strength
• The transmission network tends to be “soft” in the middle; and for the GFL, soft at the sending end, too
• Sync condensers improve GFL stability, but location matters, and sync condensers introduce additional dynamics!
• Complex relationship between fault location, SC location, SC inertia, and IBR controls. SC at the IBR resource may not always best for stability!

More to Come
• Generalize findings for a variety of IBR and HV transmission systems (this analysis is a starting point; single IBR + simple topology; single snapshot of both GFL & GFM controls here).
Grid Forming Inverters Reality Check:

- The elephant in the room relative to 100% inverters is “ever”, not “always”
 - And yes, there are places that are getting close today.
 - Pockets or regions of 100% exporting power are real now, and will become common-place.
- The reality that this is NOT cooked.
 - The BESS experience isn’t that big yet. And BESS isn’t PV or wind.
 - It’s not that simple. OEMs and others are actively chipping away for wind and PV
- There isn’t a (single) “GFM” available.
 - Yes, we need to get moving, faster, better
 - No, we don’t have all the technical issues resolved.
 - Yes, GFM can reasonably be expected to produce substantial benefits in some regards.
 - Yes, GFM performance can be worse than grid-following, especially if you’re not careful.
 - No, we can’t expect GFM to make all the grid problems go away
- Many unintended consequences there are.
 - Shouldn’t and can’t just replicate synchronous machines.
 - We can and must do better: There is every reason to expect good outcomes:
 - Don’t panic and carry on
 - More studies, more demonstrations, more lab work, more investment! - are all happening
Thanks

nicholas.miller@hickoryledge.com

Matt Richwine
Matthew.Richwine@telos.energy

Special thanks to the support provided by Ric O’Connell at GridLAB!