Modeling of grid forming (GFM) IBR and frequency response in a 100% IBR Grid

Deepak Ramasubramanian
dramasubramanian@epri.com

WECC Grid-Forming Inverter-Based Resources Webinar
October 13th 2021
Virtual Meeting

This presentation is, in part, supported by the U.S. Department of Energy, Solar Energy Technologies Office under Award Number DE-EE0009025 A Scalable Control Architecture for 100% PV Penetration with Grid Forming Inverters
Few basics about various inverter mathematical models

<table>
<thead>
<tr>
<th>Model Type</th>
<th>Does not always imply</th>
<th>Bad model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generic model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>User defined model from manufacturer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMS/Positive sequence model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electromagnetic transient (EMT) model</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

» All mathematical models have limitations

» When using mathematical models, few questions to be asked:
 ▪ Is this the appropriate type of model for the study that is to be done?
 ▪ Is the model being used in a correct manner?
 ▪ Are all relevant components/control loops, that matter for the study, modeled?
 ▪ Is the model appropriately parameterized?
 ▪ Are sufficient validation results of model behavior available?
What you may have heard regarding grid following (GFL) and grid forming (GFM) inverters

Grid following IBR is a current source…it has a PLL….a network with only current sources and PLLs cannot be stable....hence grid forming...

<table>
<thead>
<tr>
<th>Basic control objectives</th>
<th>Grid-following inverter</th>
<th>Grid-forming inverter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deliver a specified amount of power to an energized grid</td>
<td>Set up grid voltage and frequency</td>
<td></td>
</tr>
<tr>
<td>Output quantity controlled</td>
<td>ac current magnitude and phase angle</td>
<td>ac voltage magnitude and frequency</td>
</tr>
<tr>
<td>Require a stiff and stable voltage at the terminal?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Control elements present</td>
<td>Compulsorily has a phase locked loop (PLL)</td>
<td>Compulsorily does not have a phase locked loop (PLL)</td>
</tr>
</tbody>
</table>

There are many nuances within each statement above that may blur the line between grid following and grid forming.
But Kirchhoff’s Laws still apply in a 100% current source network

Voltage levels in network decided by current and impedance
Network will collapse if i_d and i_q do not change when load changes
But from circuit theory, this network has a stable/viable solution

Values of injected current to be controlled in a timely manner for network to be stable

10% increase in constant power load

What does this have to do with grid forming behavior?
Defining grid forming behavior from system planner perspective

- Continued operation of 100% current source network is possible
 - System blackstart and restoration is a special operation scenario even today

- Today’s inverter may have issues operating in weak grid simply because the control is designed and tuned for strong grid operation
 - PLL is just part of the control architecture to obtain synchronization
 - It is not the sole cause of instability in weak grids

- Inverter control with PLL can also be developed to work in weak or even 100% IBR grids
 - Provided the required services are delivered in a timely manner

Can be beneficial to define grid forming using a performance based approach
Performance requirement for grid forming source

» GFM inverter can be defined based on its capability and the grid services it provides.

» These services should be provided while meeting standard acceptable metrics associated with reliability, security, and stability of the power system and within equipment limits.

» Few GFM sources can also be designated as blackstart resources.
Similar GFM response in EMT domain for low short circuit conditions

Based on test specification in AEMO’s Dynamic Model Acceptance Test Guideline (link)

- Pre-fault SCR = 3.0
- Post-fault SCR = 1.0
- X/R ratio = 14
- 3PHG fault at POI, Zf = 0.0, duration 0.43s

Model controls not optimally tuned

How does this link to positive sequence models?
Positive sequence generic models (a.k.a. WECC generic models)

Generic models are vendor-agnostic models that do not necessarily represent the exact control algorithm of any particular IBR vendor. When appropriately parameterized, these models can subsequently provide the trend of dynamic behavior expected from IBR plants.
The REGC_C generic model

- Approximate representation of dynamic behavior of
 - inverter’s inner current control loop.
 - Inverter’s phase locked loop
 - Current commands are translated into voltage reference commands behind an impedance

User defined positive sequence model from OEM was unable to show the oscillations
Use of REGC_C model to represent grid forming behavior

» Positive sequence response obtained using approved WECC generic models
 □ REGC_C + REEC_D + REPC_A
» Models should be parameterized with diligence and thoroughness
Comparing REGC_C response across different EMT domain GFM implementations

- Different GFM implementations, without additional tuning, can have different transient behavior.
- Complete tuning of generic positive sequence model is yet to be completed.
 - But results are encouraging!

EMT domain GFM implementations include virtual oscillator based, droop based, PLL based, and unknown implementations.
Modeling system islanding with GFM IBR

- A portion of bulk power system is to be islanded
- System has mix of GFL, GFM, and synchronous machines
- Islanded section has
 - load of 46 MW
 - IBRs of 125 MVA capacity
- System simulated in EMT domain and positive sequence domain
Frequency response upon island creation

Now, how to assess adequacy of frequency response in a 100% IBR network?

- Encouraging (not yet perfect!) results across both EMT domain and positive sequence domain
- WECC generic models can be first step for planning study with GFM IBRs
IBRs and frequency response...

Concerns with increase in IBR

- Reduced inertial energy injection machines
- Reduced time to react to frequency imbalances
- Increased probability of activation of UFLS
- Cascading outages due to activation of loss of mains protection

Graph shows the frequency response over time with two curves: one for all synchronous machines and another for 50% load served by IBRs. The UFLS Threshold is indicated as a horizontal line at 59.5 Hz.
Frequency response in the bulk power system

» Sufficient spinning reserve is available on all sources

» Response for a 5% load increase is discussed

What would happen if IBRs replace the generation sources?
Impact of replacing machines with IBR...

» Replacing synchronous machines with IBRs:
 ▪ IBRs operate in constant P,Q mode
 ▪ Similar RoCoF as with smaller synchronous machines
 ▪ UFLS triggered because of fewer number of resources providing frequency response
 ○ Only G2 provides response

Is this because of IBRs or because of reduced amount of response?
Can it happen with synchronous machines too...?

With all synchronous machines, governors on G1 and G3 are switched off:
- UFLS triggered because of fewer number of resources providing frequency response
 - Again only G2 providing response

Number of resources providing response matters!
Can conventional IBRs provide frequency response…?

» Both IBRs at G1 and G3 have governor – like capability enabled:
 ▪ 750ms time lag in IBR control
 ▪ Inherent fast primary response due to lack of mechanical components and low inertia

» If IBR controls need a measure of electrical frequency, robust measurement techniques should be implemented

FERC Order 842 presently mandates this governor – like capability in IBRs

Provision of such a functionality can make an IBR grid forming?
Inertial energy injection from synchronous machine compared to energy injection from IBR

- IBR energy injection delayed by around 500ms
- But subsequent continued energy injection from IBR results in higher nadir

Delayed energy injection from IBR causes higher RoCoF

Machine inertial energy injection

Electromagnetic response from machine

Sustained IBR energy injection causes higher nadir

Machine governor response starts to dominate

- IBR energy injection delayed by around 500ms
- But subsequent continued energy injection from IBR results in higher nadir
What does present draft IEEE P2800 standard say about primary frequency response?

Table 10 from Draft 5.1 of IEEE P2800 Draft Standard

- **15mHz - 36mHz deadband with 2% - 5% droop**

- **Change in IBR plant power output may not be required to be greater than maximum ramp rate of plant**
 - Should be as fast as technically feasible

Will this capability ever be sufficient for 100% IBR grids?
Example: Two PV plants in an existing strong network

- Each 200 MVA PV plant is a full switching model\(^1\)
- Frequency control with 17mHz dead band and 5% droop at inverter level
- Comparison with 1pu/s and 10pu/s ramp rate on active power command

\(^1\)https://www.pscad.com/knowledge-base/article/521

Both ramp rates meet requirements mentioned in IEEE P2800 Draft Standard
Lower ramp rates may not work in a 100% IBR system

» A low inertia power network needs fast injection of current to mitigate imbalances.

» Suitable choice of ramp rate limit can bring about a stable response.

Maximum ramp rate influenced by source behind the inverter

Batteries can tolerate higher ramp rates as opposed to wind turbines

- 100% IBR network created at t=2.0s
- Load increase at t=3.0s
Lower ramp rate requires more responsive resources

- Possible to obtain stable frequency control in a 100% IBR network, with lower ramp rates
- Requires more resources to share the change in energy burden
- Any form of IBR device/control can have inherent ramp rate limits

Important to recognize this if newer IBRs have to additionally support older IBRs

5pu/s – Two PV plants of 200 MVA each
2pu/s – Three PV plants of 100 MVA each
Summary

» To conduct future planning studies, availability of adequate simulation models in software library is important

» Any mathematical model, in any software domain, can be a bad model

» New generic positive sequence models parameterized with due diligence show promise in representing behavior of 100% IBR network
 ▪ Not intended to completely replace other detailed studies
 ▪ Rather, adds more tools in a system planner’s toolkit to study high IBR systems

» Important to continue to work with OEMs to validate model behavior

» When evaluating frequency response of an IBR network, important to consider effect of ramp rate limit

» More IBR resources that provide frequency response, the better it will be for the system
Few references:

» EMT and Positive Sequence Domain Model of Grid Forming PV Plant (GFM-PV), EPRI, Palo Alto, CA, 2021, 3002021787

Together...Shaping the Future of Energy