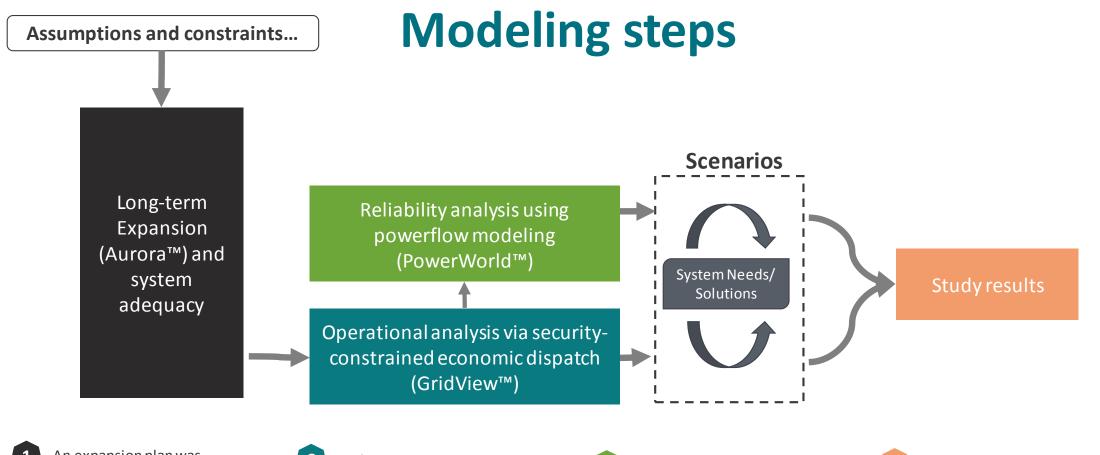

Western Flexibility Assessment

Investigating the West's Changing Resource Mix and Implications for System Flexibility

Thomas A. Carr, Western Interstate Energy Board October 29, 2019 ESIG 2019 Fall Technical Workshop - Charlotte, North Carolina Prepared by Energy Strategies for submission under Agreement with the Western Interstate Energy Board

Study Footprint: Results conveyed at regional-level, but modeling performed on full grid

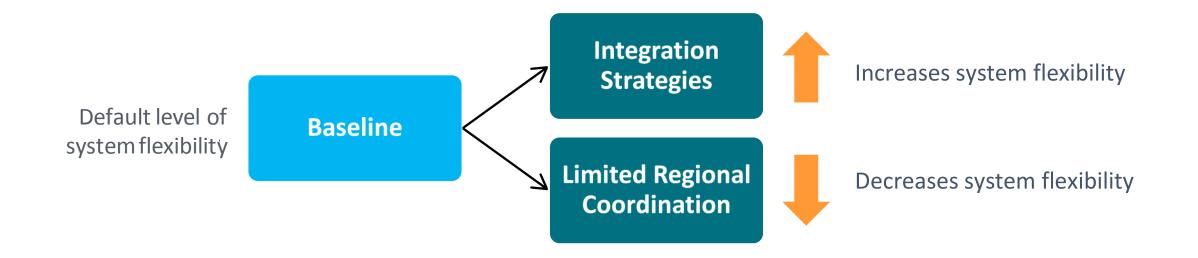


Full nodal analysis used in congestion and powerflow studies represent detailed system (no regional aggregation)

Projected RPS/Clean Energy Targets State

		California			North	west			Intermountain		Rockies		Southwest	
	Year	СА	OR		W	4	ID	MT	NV	UT	со	WY	AZ	NM
2	2020	33%	20%	6	159	%	4%	15%	22%	0%	30%	0%	10%	20%
2	2021	33%	20%	/ D	159	%	8%	15%	22%	0%	30%	0%	11%	20%
2	2022	33%	20%	6	159	%	12%	15%	26 %	0%	30%	0%	12%	20%
2	2023	33%	3% 20%	/ D	209	%	16 %	15%	26 %	0%	32%	0%	13%	20%
2	2024	44%	20%	/ D	259	%	20 %	15%	3 4%	0%	36%	0%	14%	20%
2	2025	44%	27%	6	309	%	24%	15%	34%	0%	40%	0%	15%	25%
2	2026	44%	27%		35%	35	28 %	15%	34%	0%	44%	0%	15%	30%
2	2027	52%	27%		40%	203	32%	15%	42%	0%	48 %	0%	20%	35%
2	2028	52%	27%		45%	S by	36%	15%	42%	0%	52%	0%	25%	40%
2	2029	52%	27%	Invest	50%	RPS	40%	15%	42%	0%	56%	0%	30%	45%
2	2030	60%	35%		55%	80%	44%	15%	50%	0%	60%	0%	35%	50%
2	2031	63%	35%	and	60 %	and	48%	15%	50%	0%	64%	0%	40 %	53%
2	2032	66%	35%	Cap	65%	Cap a	52%	15%	50%	0%	68 %	0%	45%	56%
2	2033	69%	35%		70%		56%	15%	50%	0%	72%	0%	50%	59%
2	2034	72%	35%		75%	Carbon	60%	15%	50%	0%	76 %	0%	55%	62 %
2	2035	75%	45%		80%	Ü	64 %	15%	50%	0%	80%	0%	60%	65%

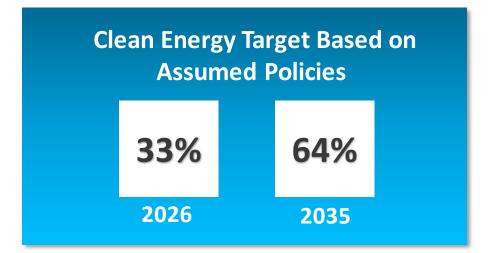
Study Period

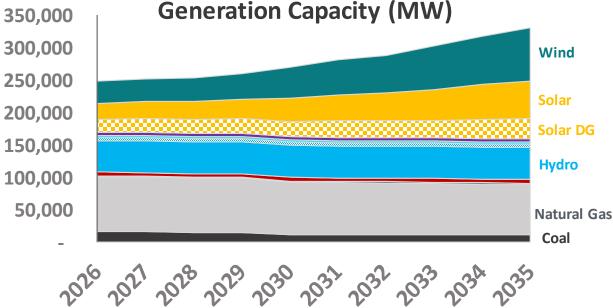

An expansion plan was developed to meet state policies and adequacy, with extra adequacy studies for Northwest. Production cost modeling was performed to evaluate system performance. Solutions were evaluated and system conditions during stressed hours are passed to powerflow model.

Powerflow modeling evaluates reliability for steady-state performance. Needs and solutions are considered. Results from all studies synthesized to draw conclusions

ENERGY

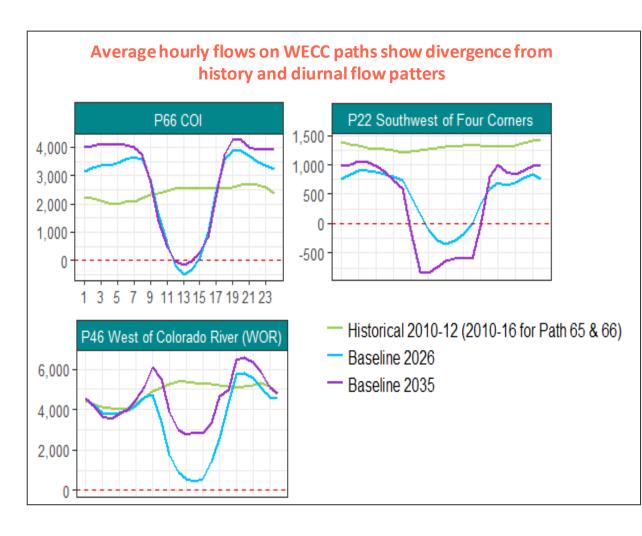
Baseline Case

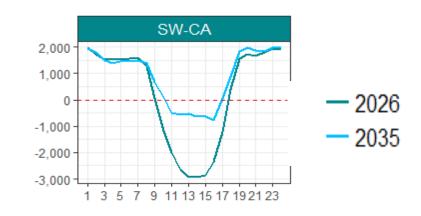

Baseline Case – "expected future" Scenarios: (1) higher flexibility and (2) lower flexibility



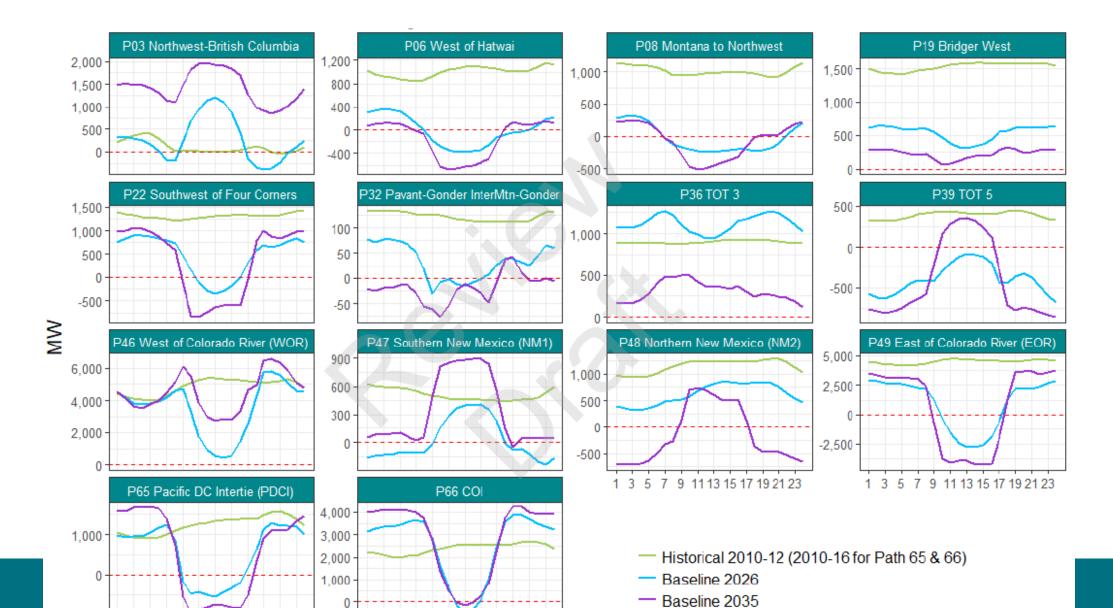
Baseline Case represents "default" amount of system flexibility

- **Renewable resources** are deployed to meet modeled state clean energy policy requirements
- **Regionalization** of energy markets occurs (i.e. no transmission service charges between BAAs)
- Load growth occurs consistent with recent regional and balancing area forecasts 165 GW by 2035
- Assumed near-term integrated resource portfolios (IRPs) resources are constructed, then capacity expansion modeling (AURORA[™]) added resources for remainder of study period
- Announced and assumed coal retirements total 7 GW by 2026
- Assumes a small set of "near-term" transmission projects with a direct path to cost recovery are built


Western States Cumulative

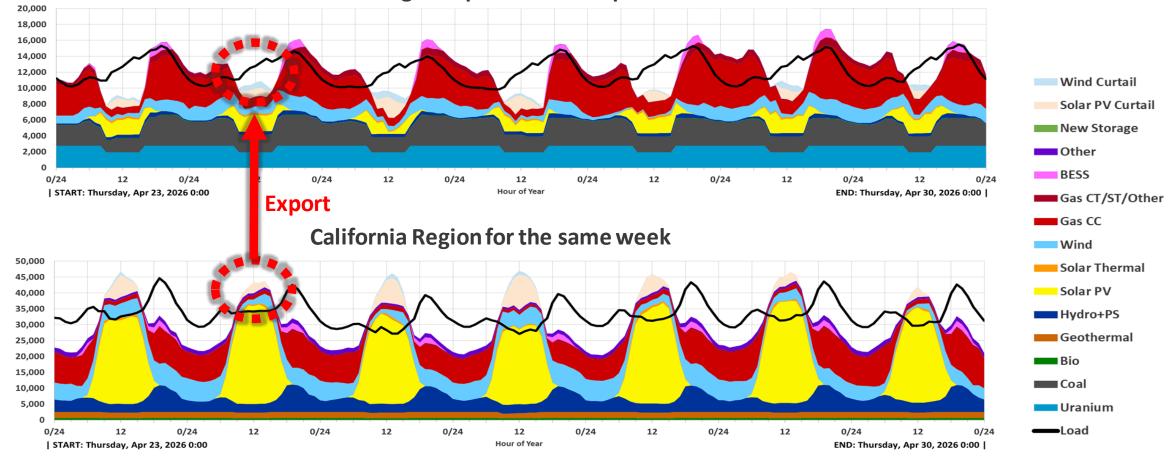

Study Year

Baseline Case	2026	2035
Curtailments (%)	3%	20%
Clean Energy Penetration (%)	 ✓ Hit target 33% 	Missed target 64%
Transmission Congestion	Isolated/Low	High
Production Costs (\$B)	\$11.1	\$10.0
CO ₂ Emissions (Million Metric Tons)	161	134

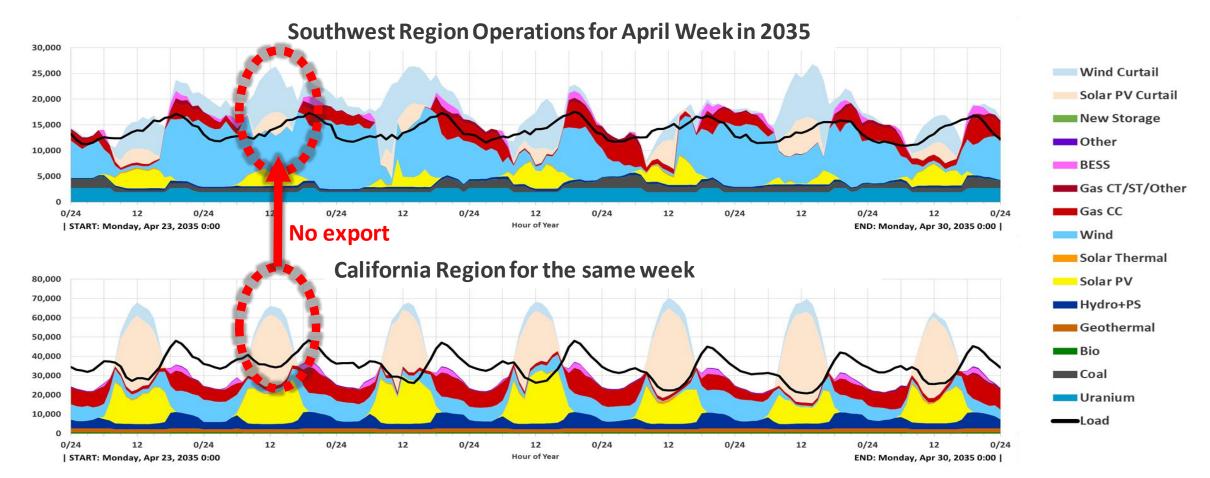

Interregional power flows increase and support system flexibility

- Results indicate that interregional power flows may change significantly from historical levels – more dynamic use of system indicates "unplanned" value in system
- Diurnal changes in flow patterns become the new norm
- In certain instances, interregional power flows can decrease under high penetrations of renewables

Changes in Daily Power Flows on Major WECC Paths



Page


11

In the 2020's, interregional exchange is viable and common flexibility strategy

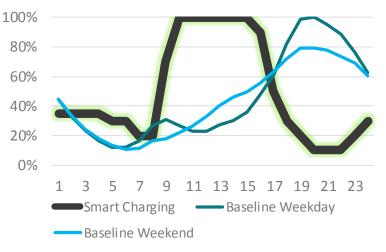
Southwest Region Operations for April Week in 2026

By the 2030s, a lack of buyers for excess renewable power is partially to blame for the flexibility challenges

ENERGY STRATEGIES

SCENARIOS

Integration Strategies Scenario


Increases flexibility not already built into Baseline Case

"How effective are investments or decisions that increase system flexibility?"

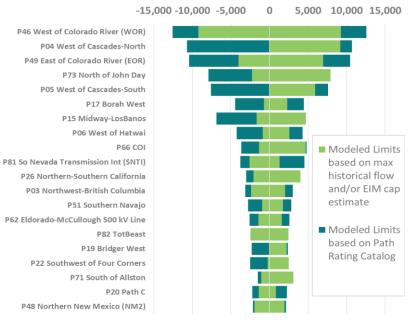
• Key assumptions:

- New transmission upgrades to help deliver renewable power to loads
- Major build-out of long-duration storage (10 GW) and 4-hour battery storage co-located at new renewable energy facilities (32 GW)
- Managed charging of EV-loads
- Additional resource diversity and enhanced generator siting

Assumed EV Charging Shape (avg. day)

Assumed Incremental Storage (GW)

Technology	2026	2035
4-hr Battery	2.1	32.5
12-hr Pumped Storage	0.60	10.2


Limited Coordination Scenario

- <u>Removes institutional flexibility</u> built into Baseline Case in the form of wholesale market coordination
 - "What if increased coordination of Western wholesale power markets does not occur"?

• Key assumptions:

- Western EIM continues, but a West-wide dayahead wholesale market does not materialize
- Flows on key paths are limited to historical maximums
- Ramping of flows on key paths are limited to . historical maximums

Path limits based on historical values

...

On-Peak & off-peak non-firm wheeling charges assumed for all day-ahead transactions

Business-as-usual transmission operations and efficiency

Key Results from the 3 Scenarios

	System Flexibility:	Lower 🗸	Benchmark	Higher 个
Study Year	Study Case:	Limited Coordination	Baseline	Integration Strategies
2026	\mathbf{C} untailmeanta (0 /)	11%	3%	0%
2035	Curtailments (%)	46%	20%	9%
2026	2026 Target 33%	34% 🗸	36% 🗸	37% 🗸
2035	Renewable Penetration (%) 2035 Target 66%	49% 🗙	52% 🗶	69% 🗸
2026	CO2 Emissions	165	161	159
2035	(Million Metric Tons)	151	134	108
2026	Production Costs	\$12.1	\$11.1	\$10.7
2035	(\$ Billions)	\$11.3	\$10.0	\$7.8

Summary

- ✓ The West can achieve near-term (2026) policy targets with modest curtailments and without major changes to system flexibility. However, over time policy targets become more difficult to achieve.
- ✓ Regions will rely heavily on imports/exports to meet flexibility needs, and transfers between regions will increase significantly in the coming years. Interregional power flows will change from historic patterns.
- ✓ By the 2030s, the "flexibility cost" of not having coordinated wholesale markets becomes severe and policy goals may not be attained without more flexibility to the system.
- ✓ A balanced set of flexibility solutions are likely needed. The urgency in implementing these solutions increases over time. Market coordination, flexibility investments, customer programs and new operational practices are all going to help and are all likely to be required.
- ✓ The Western transmission system is robust and dynamic, providing value in unanticipated ways. However, more transmission will likely be needed to provide capacity/flexibility to meet long-term policy goals.

THANK YOU

Project Manager Thomas Carr Western Energy Board <u>tcarr@westernenergyboard.org</u> 303-573-8910

Project Lead Keegan Moyer <u>kmoyer@energystrat.com</u>

215 South State Street, Suite 200 Salt Lake City, Utah 84111 (801) 355-4365

2

 $\overline{\mathbf{O}}$

energystrat.com

ENERGY STRATEGIES

ENERGY

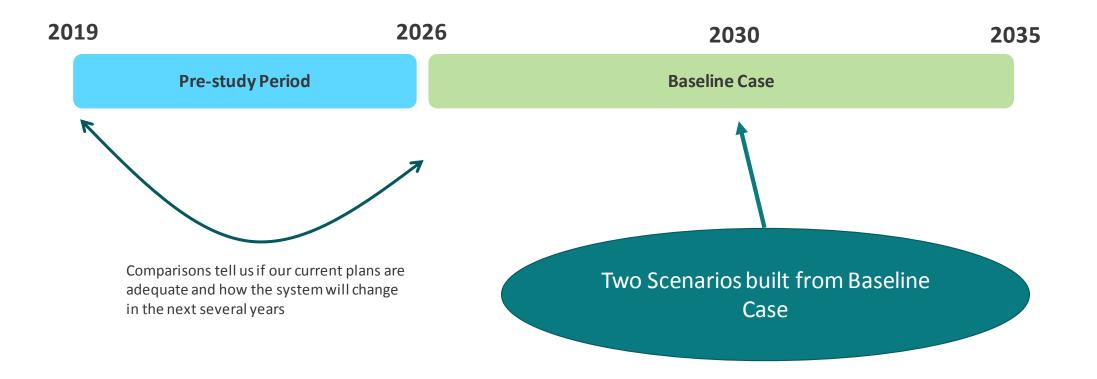
Supplemental Slides

Baseline Case Details

- What it is: Assumes that planned or potential RPS or GHG reduction policy is implemented in certain states; intended to represent an expected future
- What it is NOT: An endorsement or prediction of any specific policy or a determination around specific infrastructure needs

Resource Type	2019	2025	Change
Coal	28,112	20,670	(7,442)
DG	12,534	18,744	6,210
Gas	83,712	82,358	(1,354)
Geo	2,666	2,753	87
Hydro	49,161	48,912	(248)
Nuclear	7,443	6,321	(1,122)
Other	2,400	2,738	338
Other Thermal	756	586	(171)
Solar	16,062	20,769	4,707
Storage	5,260	8,082	2,822
Wind	21,627	26,186	4,559
TOTAL	229,732	238,118	8,386

Western Mix (MW): Forecast for Baseline Case in 2025


Data sources: EIA, WECC Anchor Data Set, California PUC IRP (2017-18), utility	
IRPs	

	Assumed State Policy for Baseline Case														
Year	Californ	California							Interm	ountain	Rockies		Southwest		
rear	СА		0	R	V	VA	ID	MT	NV	UT	СО	WY	AZ	NM	
2020	33%		20	%	1	5%	4%	15%	22%	0%	30%	0%	10%	20%	
2021	33%		20%	1	5%	8%	15%	22%	0%	30%	0%	11%	20%		
2022	33%		20	%	1	5%	12%	15%	26%	0%	30%	0%	12%	20%	
2023	33%		20	%	2	0%	16%	15%	26%	0%	32%	0%	13%	20%	
2024	44%		20	%	2	5%	20%	15%	34%	0%	36%	0%	14%	20%	
2025	44%		27%	3	0%	24%	15%	34%	0%	40%	0%	15%	25%		
2026	44%	ade	27%		35%		28%	15%	34%	0%	44%	0%	15%	30%	
2027	52%	d Tr	27%		40%	Sby	32%	15%	42%	0%	48%	0%	20%	35%	
2028	52%	anc	27%		45%	RP	36%	15%	42%	0%	52%	0%	25%	40%	
2029	52%	ар	27%	Invest	50%	%0	40%	15%	42%	0%	56%	0%	30%	45%	
2030	60%		35%		55%	a5	44%	15%	50%	0%	60%	0%	35%	50%	Period
2031	63%		35% pue	60%	p and 2035	48%	15%	50%	0%	64%	0%	40%	53%		
2032	66%		35%		65%	Cap	52%	15%	50%	0%	68%	0%	45%	56%	Study
2033	69%			70%	uou	56%	15%	50%	0%	72%	0%	50%	59%		
2034	72%			75%	Carbon	60%	15%	50%	0%	76%	0%	55%	62%		
2035	75%		45%		80%		64%	15%	50%	0%	80%	0%	60%	65%	

*Shaded cells indicate assumed policy incremental to BAU

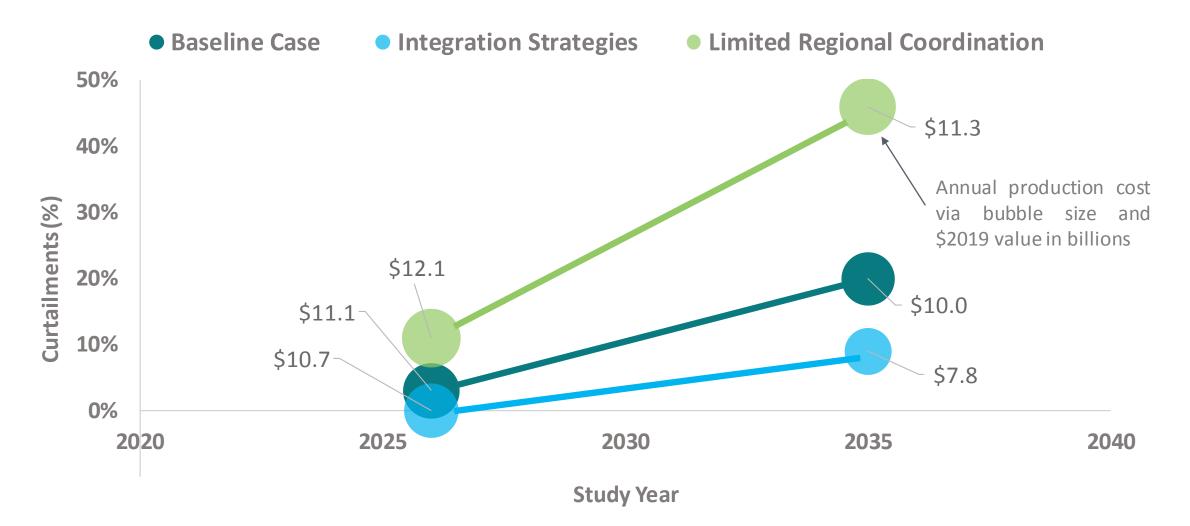
Load	Transmission	Generation	Other	
WECC-wide gross load at 0.8% CAGR	Only approved upgrades assumed in-service	Announced and anticipated coal retirements	DA market implemented by 2025	
25 GW of distributed PV by 2035	No Full Gateway,	2030 CA build	2035 carbon price based	
	B2H, other regional	consistent with	on CEC IEPR:	
	projects	17-18 IRP	\$36.44 / ton (2019\$)	
8.3 GW of new	Montana	Resource potential	Henry Hub (2019\$/mmBtu)	
demand from EVs by	transmission	capped at state-	2026: \$3.83	
2035	available in 2025	level	2035: \$4.77	

Study Period

Baseline Case Curtailment and Clean Energy Penetration by Regions

Regional load	20	26	2035		
served by clean energy ²⁸	Curtailment (%)	Penetration (%)	Curtailment (%)	Penetration (%)	
Basin	0%	14%	15%	32%	
California	3%	49%	25%	56%	
Northwest	1%	26%	12%	60%	
Rocky Mountain	5%	35%	26%	65%	
Southwest	2%	34%	18%	36%	
Western U.S.	3%	36%	20%	52%	
	Clean energy	/ target: 33%	Clean energy	/ target: 64%	

Integration Strategies Curtailment and Penetration by Regions


Regional load	20	26	2035		
served by clean energy ³⁶	Curtailment (%)	Penetration (%)	Curtailment (%)	Penetration (%)	
Basin	1%	13%	12%	34%	
California	0%	51%	8%	81%	
Northwest	1%	26%	7%	68%	
Rocky Mountain	0%	37%	11%	76%	
Southwest	0%	35%	8%	55%	
Western U.S.	0%	37%	9%	69%	
	Clean energy	target: 33%	Clean energy	/ target: 64%	

Limited Regional Coordination Curtailment and Penetration by Regions

Regional load	20	26	2035		
served by clean energy ³⁷	Curtailment (%)	Penetration (%)	Curtailment (%)	Penetration (%)	
Basin	23%	13%	51%	30%	
California	12%	46%	33%	53%	
Northwest	2%	26%	15%	56%	
Rocky Mountain	3%	32%	26%	54%	
Southwest	7%	34%	36%	34%	
Western U.S.	11%	34%	46%	49%	
	Clean energy	target: 33%	Clean energy	/ target: 64%	

Summary of Key Study Metrics

A balanced set of solutions are likely needed to increase system flexibility to levels necessary to assumed policy goals

