Question	Answer
Are Type III wind turbines considered IBR? Can you comment	Yes, because the inverter on the rotor side can control the final output. Both Type III
on physical inertia of Type III wind turbine and other	and Type IV wind do have quite a bit of inertia, however under present control
differences between pure IBR?	paradigms, in both these resources, the inverter effectively decouples the machine
	from the grid. However, if one wants to extract inertial energy from wind turbines, it
	could potentially be easier to extract from Type III as the stator is directly connected to
	the grid.
Can you discuss tradeoff in providing fast active power	Absolutely. Unfortunately there is no single solution for every scenario. Fast reactive
injection vs fast reactive injection- need to worry about not	power injection could hold priority if recovering from a deep voltage sag (fault)
just frequency but also voltage stability?	because if there is no voltage, once cannot push power. On the other hand, for events
	where the voltage does not leave the continuous operation region (0.9pu to 1.1pu)
	fast active power injection would take priority.
How to control system inertia for this system type	Since we were looking at 100% IBRs, and all IBRs were assumed to be static devices (PV
	or BESS), there is no system inertia. The only inertia component would be from motor
	loads. If the question was regarding inertial response, then we don't explicitly consider
	inertial response as the objective. Instead, the aim is to inject fast active current.
VSM mode for inverters has already been tested in the UK.	The general concepts would still carry over irrespective of whether the tests are done
How will this technology change the frequency stability	on a 50 Hz system or a 60Hz system. However, other considerations related to
considerations if applied in the US ?	operation of the system, allocation of reserves, location of reserves can change from
	one network to another.
To achieve 100%, is it necessary to adjust UFLS tripping	Present UFLS thresholds have been set based on transient stability of rotating
thresholds? It's impractical to expect perfect frequency contro	machine. As the grid moves towards 100% IBRs, it become necessary to re-evaluate
- should we trip below 59.5, 59.3 Hz?	the UFLS settings as it is possible that the value of 59.5Hz which was relevant for
	rotating machines is no longer relevant for IBRs
What is Smart Transformer you mentioned? Is it Phase Shifter	A smart transformer is a power electronics based transformer that is a topic of
something like that?	research. https://ieeexplore.ieee.org/document/997934
Are the 100% IBR results for WECC positive sequence? How	Yes, they are positive sequence results. The performance of each of the IBR models
can we be certain those results are accurate for such a large	that were used in the study were first verified with comparison against detailed EMT
network?	simulations. Once the frequency response and voltage response characteristics were
	matched, the positive sequence model was deemed to be acceptable in representing
	the behavior of the IBR. This was then used for the large network study.

what is preventing the electrical system operators and IBRs	A lot of present day IBR plants operate at maximum power point. So although the
plant owner to start provinding these services in the US?	plants may have the capability to provide under frequency response, they may not
	have the headroom to do so as they are operating at maximum. In order for these
	sevices to be provided, these plants would have to be dispatched down and then
	participate in anciliary and reserve service markets.
Are grid forming inverters required in a 100% IBR grid	It depends on how one defines grid forming. If grid forming inverter is defined as an
	inverter which can operate without synchronous machines and along with other
	inverters, then yes one would need such inverters. However if grid forming inverter is
	only defined as an inverter that is responsible for black start, then it may not be
	required as black start could be carried out specific rotating machines in the initial
	stages before handing off to inverters.
How does large RoCoF cause problem with UFLS?	With a large value of RoCoF, the frequency falls at a faster rate. This means that it will
	take shorter time to reach the UFLS threshold. Also, many UFLS relays themselves
	need to measure frequency in order to trip. If frequency falls at a very fast rate, the
	UFLS relays may not have time to accurately measure frequency and thus may fail to
	operate.
Generally the IBR output maximum power depending upon	Unfortunately there is no fixed answer for this question. The amount of power reserve
the wind or solar input. How much power reserve required for	required will depend on the largest contingency being studied, and also the UFLS
the IBRs to respond to the frequency fall.	thresholds. In North America, for each of the four interconnections, there are yearly
	metrics known as Interconnection Frequency Response Obligation (IFRO) that denotes
	how minimum MW of reserve is needed in each of the interconnections.
Is the ramp rate equivalent to the virtual inertia that modern	No. Ramp rate limits relate to the physical limits imposed by the source behind the
IBR control techniques propose?	inverter to restrict how fast the MW output can change. For example, in a wind
	turbine, due to mechanical and torsional constraints, the turbine can only increase its
	power output at a maximum rate. Any increase at a speed greater than this can cause
	increased wear and tear. These limits vary from one type of source to another.
What inverter model was used to simulations?	In most of EMT simulations, a switching level three phase IGBT based inverter model
	was used. For few of the EMT simulations, an average three phase inverter model was
	used. For the positive sequence simulations, an equivalent single phase positive
	sequence model was used.
Similar to the question on power mismatch - in a 100% IBR	A combination of factors will have to be used. In the transmission network, since there
grid, how can generation detect a power imbalance in the	is decoupling between angle and reactive power, and since most faults tend to be
system without that electromechanical link?	reactive, a change in angle at the terminal of the inverter can be indicative of power
	imbalance.

If we assume we have a good source and DC link behind the	The limit of di/dt of the comisenductor switches would become the limiting room rate
-	The limit of di/dt of the semiconductor switches would become the limiting ramp rate
inverter, how are we going to tackle limited di/dt of	if the power ramp rate limit is large. Here, in order to ensure that the actual current
semiconductor switches of the inverters?	output conforms to the di/dt limit, some form of current control may always be
	required within the inverter controls. Whether this current control will always remain
	active or will get activated only if the current output increases at a rate greater than
	the di/dt limit is a control design problem.
	Indeed faster response time can lead to stability issues. If there is a stability issue due
stability issues. What is a better solution: faster response	to this, it takes precedence and top priority over all other factors. So which means
times vs larger energy reserve?	definitely a slower response time will have to be imposed to keep stability. If this
	means larger energy reserves then that would have to be designed and accomodated.
	However, it could mean larger number of resources will have to respond
	simultaneously. So once speed of response due to stability constraint becomes the
	limiting factor, other solutions will have to be designed based upon this factor.
On slide 22, can you please explain what is implied by IBR	in that scenario, the IBR only provides reactive power support to the grid and all its
being a STATCOM? Thanks.	active power output is only to serve its own auxiliary load. Thus from the perspective
	of the grid, the IBR has a zero active power output and a non-zero reactive power
	output.
Very nice presentation! I was curious about the power-	Thank you. The structure of the IBR controller in PSLF was not a one-to-one
frequency oscillations from GFM inverters in PSLF that do not	representation of the structure of the IBR controller in PSCAD. The reason for this is
appear in PSCAD. Where do these come from?	that in PSLF, the present WECC generic models (specifically the REGC_C and REEC_C
	models) were being used whereas in PSCAD, newer forms of IBR control were being
	evaluated. The objective for using an 'older' version of control in PSLF was to verify
	whether one really needs a new model to be developed in PSLF or can one make do
	with existing models. Due to the difference in the control structure, there were
	additional control gains that were required in PSLF which resulted in an additional
	oscillatory mode appearing. It may be possible to reduce or even remove this
	oscillatory mode with adequate tuning of the controls in PSLF, however that task has
	not yet been carried out.
Typical PV plants are designed to support 0.95 leading/lagging	As the number of inverter based resources increase, the reactive power limit based on
PF grid support. Is this sufficient for most grid support	power factor may be sufficient for regular continuous operation but would likely not
concerns?	be sufficient during a fault and during recovery after fault clearing.

What do you mean by angle droop	We implemented a control loop that looks at how much the terminal voltage angle
	deviates during a transient, from its own pre-contingency steady state value of angle.
	Based upon this deviation in angle, the power reference is changed proportionally. So
	in some aspects, its operation is similar to voltage magnitude droop that is used in
	reactive control loops.
What kind of digital systems are required to maintain stability	Increased observability of the network will be required as the number of devices on
and manage such events in a 100% IBR systems?	the network will drastically increase. Further, there can be a need for wide area
	control systems which would require centralized controllers and measurement
	devices. Further, since there would be a need for IBRs to be dispatchable,
	communication elements, telemetry, and security protocols would be required.
It seems that the distributed slack bus approach would require	For an incremental transition, one can give priority to the frequency droop portion of
mass deployment rather than incremental conversion. How do	the control system rather than distributed slack bus portion. So with this difference in
you manage the transition to 100% IBR?	priority, the distributed slack bus can be a much slower acting controller similar to
	today's secondary frequency control. As the number of newer IBRs increase, the
	priority of distributed slack can be raised throughout the fleet.
How much energy reserve are you assuming to respond to the	In our simulations, we considered 10% of the rating of the devices to be the headroom
frequency events? No additional energy reserve has been	available. No additional energy reserve was considered. Although 10% of the rating
considered?	was available, not all of the 10% is used for the frequency events that were studied.
For IBRs to provide frequency response, must they operated at	Yes, if they have to provide under frequency response. Alternatively, if the IBR plant is
some level below their maximum?	a hybrid plant with say PV + storage, then the PV portion of the plant could operate at
	maximum power point while the storage portion could provide the frequency
	response service.
Are high frequency events even more serious in IBR systems?	Yes, high frequency events can be serious. However, many IBRs have easier capability
If UFLS is triggered in a low frequency event, it helps to	to respond to such events. But that being said, these events should be equally studied
stabilize frequency.	and planned for as suppose there is a system split condition, then the IBRs in the area
	that exported a large amount of power should have mechanisms available to either
	immediately trip or reduce there power output. This can be achieved through
	implementation of Special Protection Schemes (SPS) or Remedial Action Schemes
	(RAS)

There are diverse IBR resources that can provide primary	Unfortunately there is no fixed answer for this question. The amount of power reserve
frequency response, but all are energy limited. What is	required will depend on the largest contingency being studied, and also the UFLS
appropriate reservation of power vs energy?	thresholds. However the amount of energy reserve required will depend on for how
	long is that additional response to be provided. This will have to go into the design and
	build of the IBR resource. Further, it will also depend on what are additional services
	that the IBR provides to the network. For example, if the IBR aims to provide only
	frequency response services, then the energy reserve can be smaller as a larger
	amount of power can be delivered for a short duration of time. However, if the IBR
	also wants to provide regulation services, then the stacked amount of services will
	have to be ascertaing through a multi-objective optimization. This will subsequently
	decide the power vs energy balance and also play a role in the rate at which power is
	delivered to the network.
Do these studies consider how / if PWM saturation affects	We did not consider that in this particular study. The PWM of the switching models
performance of high IBR systems?	used did not saturate for the load imbalance events. However, for the faults, there
	could have been some amount of saturation that occurred during the fault, and upon
What is Pref	The reference active power that can also be construed as the active power command
	that comes from the control center as a dispatch signal.
How about the locational importance of the frequency	If the network is inherently electrically close, then the location importance can be
support in a smaller network?	much lower as the disturbance would propagate faster over the network allowing for
	the response to also propagate faster.
Grid Forming inverter with battery component will solve all	Not necessarily. A grid forming inverter should not be construed as a silver bullet that
the network issues?	can fix all issues. It can equally cause stability related issues. Further, it cannot override
	fundamental electrical properties of how much power can be transferred over a
	corridor. Here one assumes that the rating of the grid forming inverter is finite and
	reasonable. Thus, for the future network, grid forming inverters could only be one part
	of the solution set.