Question	Answer
Why did you choose the HVDC you did in the TX study? MISO	We chose HVDC as they are in different interconnections. MISO and SPP did have
and SPP had their own outage problems, so it isn't obvious	issues as well, but the timings were not the same and therefore it demonstrates how
that those regions would have helped.	they could have helped each other. Going further is better, but adds costs and a
	network is better than long single lines
People have come around to accepting there is a need for a	Yes, build it underground where necessary and do it in a way that enhances the lower
lot more transmission. What we need are ideas how to get it	cost for bills. These are two ideas should easily enable more transmission.
built. Got any?	
Have we freed ourselves from SF6 step down vulnerabilities?	Not fully, though there is active research in removing this gas from transformers and
at what cost?	using other insulators for the breakers and equipment.
What opportunities exist to "add on" transmission to existing	There is lots of opportunities for existing ROW conversion from AC to DC that would
transportation proposals that would require similar ROW	increase capacity. There is also opportunities for electrifying transpoprtation routes
requirements?	that could be enhanced by transmsision augmentation.
On the question, would HVDC help TX, you're ignoring that	No, we are not ignoring that at all. The generation within ERCOT was not producing at
over the long-term it will mean less generation gets built in TX	the time and the variability across ERCOT was not much better, meaning no matter
because of competition. Thoughts?	how much was built outside assistance would be valuable. Indeed, with better ties,
	MORE generation would be built in ERCOT/Texas as they can export lower-cost
	electricity at different times to other regions. We want to build the minimum needed
	everywhere. Otherwise costs will get too high and resources too diluted.
Would a 3000MW HVDC tie become the largest source	It would be a large contingency if it is assumed to be firm (which it likely would not) it
contingency requiring ERCOT to carry more reserves thus	would rather be an addition EIM type entity. Some savings might get removed with
defeating some of the savings?	some addition reserves if that were the case.
Is HVDC politically possible in Texas/ERCOT? It seems like state	Too early to determine if it will become politically palitable in Texas. It provides more
officials are still opposed to interstate transmission even after	customers for their energy, so eventually, one would hope they might be convinced of
the latest cold snap.	the opportunity.
Do the 2050 scenarios include worst case scenarios impacted	Huge assumptions about the climate in 2050. Best case scenario is undergrounding the
by climate change: e.g. large swaths of transmission damaged	transmission. Solves both the wild fire and snow storm issues. Higher costs of course.
by wildfires or snowstorms?	Still lower cost than exclusive local generation.
To what extent can transmission help shut down some of the	Can help a lot given the ability to move remote resources locally and for small amounts
dirtiest and most damaging peaker plants?	of energy (peakers) this is warranted. The key would be reserve sharing agreements
	between regions and markets.
Are these affordable/accessible enough to be applied to	I am sorry, I don't have an answer to this.
textile industries' carbon contributions off the Citarum River;	
amplifying GAP or the Ganga River BMP?	

Are there transmission requirements that require above	Underground entirely possible. The price point can be higher based upon terrain.
ground installation or is underground an option for long range	
transmission lines?	
Solar potentialisn't this based on current efficiencies of 20%	Not really a big change with efficiency. It just lowers the space or increases the ILR for
which is going to increase. Germany does pretty well?	same space. Highest efficiency in US is ~30-40%. Capacity factors are more important
	in driving costs.
For wind power: any plans for alternative/more sustainable	The turbine blades are currently fiberglass. There is work ongoing with respect to
materials to the current fiberglass-made panels??	graphene and carbon fiber. These are early days. More fruitful work is replacing fossil
	derived road surfaces with ground down turbine blades.
Isn't "ZBF 2050 TWh without climate change" a wrong	No the "without climate change" is using baked in CC from data. The RCP values are
assumption, since the impacts are already here and will	from projections that are estimates of the future. Just with all modeling. We need to
continue; only the magnitude might be lesser/greater	determine the impacts of these on the systems. We can either optimize for them or
	test robustness of systems against change. We do both.
Is the \$1.2 billion cost for each of the HVDC line from SPP and	No, the \$1.2 billion is the cost of the HVDC lines each. Weatherization of existing or
MISO each, includes weatherization infrastructure?	new plants (wind) would be additional.
The dynamic view shows a lot of exporting energy to Canada .	Lower cost VRE generation in US over the Canadian generation. The plots switch later
That surprises me. Especially the NY wind. What is driving	in the year when we import. The model uses Canadian storage to its advantage over
that?	seasons
How do you see Canada playing into the transmission Storage	Canada and its great hydro resources are included. We do not overly rely on expansion
picture	into Canada as predictions are hard with respect to water and Canadian requirements
	in coming years.