

The Milligan School on Cost Causation

25.5.2021 EERA/ESIG Joint Webinar: Towards a Common Understanding of Energy System Costs

Juha Kiviluoma

Sources of inspiration

- Michael Milligan et. al
 - E.g. Michael Milligan, Erik Ela, Bri-Mathias Hodge, Brendan Kirby, Debra Lew, Charlton Clark, Jennifer DeCesaro, Kevin Lynn. "Integration of Variable Generation, Cost-Causation, and Integration Costs", The Electricity Journal, Volume 24, Issue 9, 2011, Pages 51-63
- Lennart Söder
 - Upcoming report: System and integration costs Definitions and analysis
- Discussions with many others (e.g. IEA Wind Task 25)
- Own ponderings
 - E.g. Sampo Soimakallio, Juha Kiviluoma, Laura Saikku. "The complexity and challenges of determining GHG (greenhouse gas) emissions from grid electricity consumption and conservation in LCA (life cycle assessment) – A methodological review", Energy, Volume 36, Issue 12, 2011, Pages 6705-6713.

First remarks about integration cost

- Typical interpretation: An additional cost that should be added when comparing e.g. generation technologies
 - LCOE + Integ. Cost
- May include
 - 'profile costs'
 - Compare scenarios: technology vs. without technology
 - Flat-block or load profile or alternative technology
 - Rest of the system may stay constant or be optimized
 - 'balancing / reserve costs' if not endogenous, then add from literature
 - 'grid costs' same thing
- Danger of double counting

A very simple case study

- No investments
- Power and heat both single node
- Only 'profile cost'

IRENA

FlexT©

- Comparing operational costs of different scenario runs
 - Against 'flat block generator' with zero O&M cost
- Using IRENA FlexTool
- The absolute values are not the point they are driven by assumptions as always

https://www.irena.org/energytransition/Energy-System-Models-and-Data/IRENA-FlexTool

Base scenario: 10 TWh electricity load 10 TWh heat load

	MW	var. cost / cf / eff	Inv. cost (€/kW)	Lifetime
Cond. coal	500	37.5 €/MWh	2000	40
Gas engine	1000	41.1 €/MWh	600	35
Wind	1000	CF: 0.38	1200	20
PV	1701.7	CF: 0.11	400	30
Battery	0	Eff: 81%	70 [×]	10
Oil boiler	1500	24.6 €/MWh	300	30
Heat pump	500	COP: 1 – 3.5	700	40
Heat storage	0	Eff: 98%	10 [×]	40

× Investment cost as €/kWh

'Integration cost' is system dependent

- 10 TWh electricity demand
- Existing: ~3.2 TWh wind, ~0.7 TWh PV (before curtailment)
- Add ~1.5 TWh PV
- Without battery in the system
 - PV 'profile cost': 12.6 €/MWh (against flat block generator)
- With battery (500 MW, 10 hour battery)
 - PV 'profile cost': 5.0 €/MWh (against flat block generator)

Who is to blame (attribute)?

- The previously built wind?
- The next to be built PV plant? (It's 5 kW)
- A highly variable load?

26/05/2021 VTT – beyond the obvious

Fair attribution is not possible

• It is a system of dependencies

- Multiple changes that accrue over time cannot be fairly attributed into any single change
- Not even if it is the latest one
 - As changes stack on top of it, it's contribution/attribution is not clear
 - ...and it wasn't clear in the first place

Da-Ren Chen, Chiun-Chieh Hus, "Fault-tolerant routing for pyramid networks using the least level minimal routing method", January 2003, Computer Systems Science and Engineering 18(1):35-44.

Simple case study with investments

- Previous assumptions
- Force X amount of VRE in TWh (after curtailments)
- Integration cost: Total system cost before total system cost after
- Again, the system is 10 TWh electricity and 10 TWh heat

Simple case study with investments

Simple case study with investments

-----Total cost (left y-axis) • 'Integration cost' (right y-axis)

Without the heat sector

26/05/2021

VTT – beyond the obvious

From 20 €/tCO₂ to 50 €/tCO₂

Total system cost

- Is not misleading
- The audience can immediately understand that the whole system matters
- Directs the attention to finding cost-effective solutions for fulfilling objectives (e.g. emission reductions) at least cost
 - Improve markets, transmission, flexibility, sector coupling,...
 - Analyzing the particular system
- Discuss the assumptions, modelling methodology, etc.
 - Is the sector coupling considered
 - Is VRE allowed to provide reserves
 - How many years were considered

•

Further comments

Some costs are not covered by the modelling methods

- Some ancillary service and balancing costs (especially intra-period)
- Some grid costs

. . .

- These should be evaluated for the system in question to ensure that the total system cost comparison is fair
- LCOE depends on the full load hours it's also a system property
- Market price evaluation considers short term only (no information about investment cost differences). Also has an attribution problem.

What I really want to say

- Let's focus on the important and interesting stuff
 - Finding least cost solutions for future energy systems
 - How to include operational detail in the planning problem
 - What are the solutions for operating inverter based power systems
 - Including the other energy sectors with sufficient detail
 - Using sufficient geographical scope and resolution
 - While considering different kinds of uncertainty
 - ...and still being able to run the models
- Working on these:
 - <u>Spine Toolbox</u> is an open source software to manage data and workflows for modelling (<u>Documentation</u>)
 - <u>SpineOpt</u> is a Julia-based open source energy system modelling framework capable of planning and scheduling energy and power systems with high level of temporal, spatial and technological adaptability (<u>Documentation</u>)

beyond the obvious

Juha Kiviluoma juha.Kiviluoma@vtt.fi @VTTFinland @J_Kiviluoma www.vtt.fi