System integration of low-carbon generation in future energy systems

Role of flexibility in supporting cost-efficient transition to low-carbon future

Goran Strbac

M Aunedi, D Pudjianto, X Zhang, F Teng

Whole-system modelling critical for capturing Time Imperial College and Location interactions in low carbon systems

Flexibility – drives generation portfolio

Flexibility –Storage and flexible demand

Coordinated whole-energy / multivector approach to decarbonization

Significant savings from integrating electricity and heat systems

Optimal generation portfolio is dependent on cross-vector flexibility

Silo vs integrated H₂ and electricity: impact on electricity demand and supply

6

Saving from integrated approach: £5.6bn/year

Carbon benefits of flexibility

UK scenario

11

Volume of the market for flexible technologies & smart control post 2030 in UK > £8bn/y

Imperial College London

System Integration Cost: Concept and definitions

(No universally accepted definition of system integration cost)

 Whole-System Cost (WSC) of any generation technology represents the sum of the Levelised Cost of Energy (LCOE) of that technology and the corresponding System Integration Cost (SIC):

$$WSC_{gen} = LCOE_{gen} + SIC_{gen}$$

- System integration costs or system externalities of LCTs: costs incurred in the system when these technologies are added to the generation mix
- SIC components include:
 - Increased balancing cost
 - Network reinforcements
 - Increased backup capacity cost
 - Cost of maintaining system carbon emissions
- In future, SIC concept should enable a fair comparison between different low-carbon generation technologies (e.g. variable and baseload LCG)

Illustrative methods for calculation of **System Integration Cost**

- Method 1 (Predefined replacement)
 Incremental amount of LCGT capacity added, energy-equivalent nuclear capacity retired from the system, emissions maintained by adding CCS
- Method 2 (Optimised replacement)
 1 GW of nuclear capacity removed from the system, model optimises LCGT deployment while maintaining emissions
- Method 3 (Difference in marginal system benefits)
 Incremental amount of each LCGT added to the system to find marginal benefits;
 SIC found as difference in marginal benefits
- Whole-system model (WeSIM) optimises the counterfactual (baseline) system, and then re-optimises the system where incremental LCGT capacity is added: SIC = difference in total system cost divided by added LCGT output (and expressed in £/MWh)
- SIC is quantified for marginal increases in LCGT capacity, and relative to nuclear generation
- With all methods the original system carbon intensity is maintained constant

System integration cost of low-C technologies across three methods (50 g/kWh, wind-dominated)

System integration cost of low-C technologies across three methods (50 g/kWh, PV-dominated)

Flexibility increases the ability of the system to integrate intermittent RES generation

Whole-System
Costs and
competitiveness
of RES driven by
by system
flexibility

Market design?

Imperial College London

System Integration Cost of offshore wind (net-zero carbon)

- Cost of LC gen as it increases capacity of gas CCS (LF) or H2 CCGT (HF) due to increased balancing and need to provide capacity
- Electricity Opex (increase in CCUS)
- H2 storage
- **Transmission** □ C: Decom. gas distribution
 - H2 Capex in HF
 - Carbon storage

- H2 Opex It reduces the cost of non-LC generation and interacts with hydrogen and heating ■ C: Non low-carbon gen infrastructure

R: Electricity Export C:DR C: HHP C: DH (conversion) ☑ C: DH (appliance) C: DH (network) O: H2 import ■ C: End-use conversion C: Gas network C: H2 boiler C: NG boiler O: NG boiler O:H2 storage O: ATR+Bio C:H2 network ■ C: Electrolysis C: ATR+Bio

C: DACCS

■ C: Storage

O: Electricity

C: Distribution

C: Transmission

C: Interconnnection

C: Low carbon gen

C: RH

C: HP

♦ Total

Growing need for frequency regulation related ancillary services

Share of Ancillary Services From 1.5% to 25%

Value of Frequency Response

Who should pay for this?

Significant value of inertia

Market for inertia – who should pay for it?

50

60

Who should pay for this?

Market (r)evolution

Historically, market focus has been on the energy production only

Cost effective allocation system services is needed to align

objectives of investors with objectives of society

System integration of low-carbon generation in future energy systems

Role of flexibility in supporting cost-efficient transition to low-carbon future

Goran Strbac

M Aunedi, D Pudjianto, X Zhang, F Teng