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Summary Versions of the Report  
and Meteorology Overview

This full report (and a high-resolution version for 

printing) is accompanied by a shorter summary 

report, an executive summary, and fact sheets,  

as well as a stand-alone version of Section 2 titled 

“Meteorology 101: Meteorological Data Fundamentals 

for Power System Planning,” an overview of  

meteorology, data, and modeling for readers   

of the summary report who would like a deeper 

dive into those areas.  

Weather Dataset Needs for Planning and Analyzing 

Modern Power Systems was produced by a project 

team convened by the Energy Systems Integration 

Group to assess the gaps in existing weather data 

used in power system planning, and outline a 

process for producing ideal weather datasets   

for planning studies for increasingly weather- 

dependent electric power systems. The report 

provides details on what is needed and why,  

outlines the status of and gaps in existing data   

and methods, and describes an approach to 

building a solid, long-term planning solution.  

These documents are available a https:// 

www.esig.energy/weather-data-for-power- 

system-planning. 

https://www.esig.energy/weather-data-for-power-system-planning/
https://www.esig.energy/weather-data-for-power-system-planning/
https://www.esig.energy/weather-data-for-power-system-planning/
https://www.esig.energy/weather-data-for-power-system-planning/
https://www.esig.energy/weather-data-for-power-system-planning/
https://www.esig.energy/weather-data-for-power-system-planning/
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Executive Summary

To robustly quantify possible supply/demand 
combinations in future planning scenarios  
requires long time series of temporally   
coincident weather variables that accurately 
describe the weather impacts concurrently  
affecting the electricity system.

The electricity system is rapidly transitioning from  
a system mostly powered by fossil fuels to one in 
which wind, solar, hydro, and nuclear generators 

provide most of the generating capacity and energy. At the 
same time, energy-limited resources such as battery storage 
are rapidly becoming more prevalent, and behind-the- 
meter generation is blurring the lines between generation 
and load and between transmission and distribution.  
Concurrently, load is fundamentally changing as trans- 
portation and heating electrify. These widespread changes 
lead to the increasing weather-dependence of supply and 
demand, making power system planning dramatically  
more complex and requiring much more comprehensive 
weather data for robust system planning.

Increasing Weather Dependence   
and Weather Complexity

The electric power system has always been affected  
by the weather. Demand has long been modulated by 
weather conditions, temperature in particular, which  
also impacts thermal generator capacity (especially gas 
turbines), cooling water availability, and transmission  
capacity. Hydro power is obviously impacted by the  
environmental water cycle. All types of extreme weather 
impact generators, fuel supplies, and transmission and 
distribution infrastructure. Going forward, available  
generation will increasingly be defined by the weather 
occurring at the location of every wind or solar plant.  
The behavior in time and space of multiple weather  
variables—in particular, temperature, wind, and solar  
irradiance—increasingly affects the amount of   
generation possible. 

The result is a much greater range of possible outcomes 
for supply and demand, as they will be driven by the  
behavior of multiple variables in time and space, as  

opposed to largely temperature impacts on large load 
centers. Often, between 10 and 40 years or even more of 
weather data are needed to capture this range. To robustly 
quantify the range and probability of possible supply/
demand combinations in future planning scenarios  
requires long time series of temporally coincident weather 
variables that accurately describe the frequency distribution 
and evolution of all the weather impacts concurrently 
affecting the electricity system. 

Accounting for the Increased Weather  
Dependence and Complexity in Power 
Systems Models

Power system planners’ efforts to develop resource  
portfolios that are cost-effective, reliable, and resilient 
require accurate estimates of increasingly weather- 
dependent generation and load. Although the use of 
weather observations would be ideal, this is not practical, 
and a modeling methodology must be used to synthesize 
the time series evolution of the necessary variables as  
accurately as possible. Planners study the power system 
with a variety of models that can simulate the operation 
of existing and hypothetical power systems, determine 
optimal capacity build-outs, and assess resource adequacy, 
which measures the probability or likelihood of a power 
system having insufficient resources to meet load. To 
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evaluate a power system’s dependence on weather,  
power system models require highly detailed weather 
data including the key variables influencing solar,  
wind, traditional generation, transmission, and load.

While in the past, the impact of temperature on demand 
was by far the biggest weather driver, these relationships 
are changing. The electrification of transportation and 
heating are making the end-use loads more susceptible 
to weather extremes, especially in winter. In addition, as 
the energy transition proceeds, data for wind speed and 
solar irradiance are critical for defining wind and solar 
generation patterns. Increasing weather dependence  
and complexity also mean that weather associated with 
outages and derating for transmission and all generation 
types can cause common mode failures that dramatically 
amplify weather impacts.

The need for appropriate weather data to study and  
plan for these impacts is becoming acute.

A Need for Much Higher Fidelity Weather 
Data That Meet Several Important Criteria

The most pressing need is to be able to estimate the  
supply of wind and solar generation in current and future 
resource portfolios. This requires that the weather driving 
these generators is accurately quantified at every plausible 
location where such generators exist or may be built,  
including customer-sited generation behind the meter. 
In addition, the data must represent the chronological 
evolution of weather variables in order to model and  
optimize the charge and discharge of energy storage. 

While weather modeling of the power system has  
improved considerably in the last several years, there  
are still major gaps and inaccuracies in the data available 
to power system planners. Planners lack the necessary 
information to properly quantify and mitigate reliability 
risks for power systems transitioning to a fundamentally 
new resource mix. 

No currently available datasets meet all the above criteria 
for power systems studies in U.S. geography. The National 
Renewable Energy Laboratory (NREL) Wind Integration 
National Database (WIND) Toolkit meets some of the 
criteria for wind generation estimates, and the NREL 
National Solar Radiation Database (NSRDB) meets 
some of them for solar generation estimates. Together 
these provide the rudimentary datasets that power  
system modelers are typically using today, but this  
approach is not a tenable solution looking ahead. 

The need for appropriate weather data to plan 
for the rapidly increasing weather dependence 
of both generation and load is becoming acute.

The work required to achieve a long-term  
solution to weather data needs is not trivial, 
but it is manageable and is much less costly 
than blindly building trillions of dollars of  
infrastructure without the basic tools to cost-
effectively optimize it and assess its reliability.

The Energy Systems Integration Group convened  
a project team to assess the gaps in existing weather data 
used in power system planning and outline a process for 
producing ideal weather datasets for planning studies for 
increasingly weather-dependent electric power systems of 
the future. This report provides details on what is needed 
and why, outlines the status of and gaps in existing data 
and methods, and describes an approach to building a 
solid, long-term solution (Table ES-1, p. x). The work 
required is not trivial, but it is manageable and is much 
less costly than blindly building trillions of dollars of  
infrastructure without the basic tools to cost-effectively 
optimize it and assess its reliability. Continental-scale 
multi-decadal assessments are becoming more common-
place, particularly over Europe (e.g., through academic 
institutions or interactive climate services), and some  
of these tools have global modeling capabilities for  
renewable system components. However, none of these 
assessments meet all of the above requirements, either 
(primarily due to inadequate resolution and insufficient 
validation).

Disconnect Between the Power System 
Modeling and Meteorology Communities

The processes that drive weather involve complex  
interactions of many variables, especially phenomena 
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Including the  
necessary variables

Include the necessary variables at sufficient spatio-temporal resolution and 
accuracy to reflect actual conditions that define the generation potential at 
current and future wind/solar sites and temperature at load centers

Covering multiple 
decades with ongoing 
extension

Cover multiple decades with consistent methodology and be extended on an 
ongoing basis to capture the most recent conditions and allow climate trends 
to be identified

Coincident and  
physically consistent

Are coincident and physically consistent, in space and time, across weather 
variables

Validated Are validated against real conditions with uncertainty quantified

Documented Are documented transparently and in detail, including limitations  
and a guide for usage

Periodically refreshed Are periodically refreshed to account for scientific and technological  
advancements

Available and  
accessible

Publicly available, expertly curated, and easily accessible

TA B L E  E S -1

The Main Attributes of Time Series Data Necessary  
to Meet General Power System Modeling Needs

Source: Energy Systems Integration Group.

such as local circulations that impact wind generation 
and cloud and aerosol (including smoke) processes that 
impact solar generation. The number of observations  
that would be needed to accurately describe the factors 
defining the amount of generation in different renewable 
energy portfolios is orders of magnitude higher than 
what is currently available or realistically possible.  
Fortunately, the atmosphere follows physical laws,  
and, using the available observations and sophisticated 
computer programs that model the laws governing  
atmospheric processes, it is possible to fill in many  
of the data gaps. 

Weather model output, however, has limitations. All too 
often, synthetic weather data produced by these models 
are either used in power system modeling as if they  
are equivalent to high-quality observations, or, on the 
other end of the scale, model output is rejected in favor 
of simpler, easier-to-understand observational records 
that are then extrapolated using statistical methods with 
dubious scientific basis. Both outcomes lead to study  
results that have greater uncertainty than is typically  
advertised and may result in poor downstream decisions 

when model-synthesized data that “seem reasonable”  
are assumed to accurately reflect actual present or  
future conditions.

For this reason, when significant amounts of weather-
driven renewable resources are being evaluated, power 
system analysis needs to involve meteorologists with an 
understanding of power systems—who can advise on the 
best meteorological data sources to use for a task, shine 
light on the possible biases and uncertainties that these 
choices will produce, and work together with power  

When significant amounts of weather-driven 
renewable resources are being evaluated,  
power system analysis needs to involve   
meteorologists with an understanding of  
power systems, who can advise on the best  
meteorological data sources to use for a task 
and shine light on the possible biases and  
uncertainties that these choices will produce.
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system modelers to refine both meteorological modeling 
and power system modeling codes and processes to  
provide the most effective coupling between the two.  
Although cross-sector engagement is increasing,   
and many meteorologists are now working on energy 
transition research problems, the level of engagement is 
still too low. There is a need for more direct engagement 
by the meteorology community in the energy sector,  
with the meteorology and power systems communities 
working together and each learning about the needs, 
constraints, and capabilities of the other field.

Poor Data Validation and a Lack  
of Sector Cooperation

Power system models’ reliance on synthesized weather 
data makes it critical to have confidence in these   
underlying data—and to understand their limitations  
and uncertainties—so that the resultant power system 
analyses can be trusted and their reliability quantified. 
Confidence is developed by validating and quantifying 
the uncertainty of the synthetic data, a process that  
compares the model data to as many ground truth  
observations as possible, across as much time and space 
as possible. However, few observations exist for the  
validation process.

To assess the quality of synthesized data, it is critical  
that all available observations are utilized. This may mean 
installing some new observation stations in places where 
wind and solar are likely to be deployed, but the most 
obvious and cheapest solution is to make the thousands 
of observations now available at existing (and future) 
wind and solar plants generally available. Keeping data 
proprietary is counterproductive to promoting a tran- 
sition to wind and solar generation and must change to 
enable more accurate system modeling, including a better 
understanding of the accuracy and uncertainty of synthetic 
time series of weather data. As counterintuitive as it  
may seem, it is highly likely that time series generation 
estimates for periods in the past that are being used  
for power system planning models are of considerably 
lower quality than the time series forecasts of generation 
produced for operations a day or two in advance of the 
time they are estimating. This is a direct consequence  
of the lack of validation and data sharing.

Climate Change Adds More Degrees  
of Freedom

In the near term—certainly the next five years, but likely 
the next one to two decades—the overall impact of  
climate change on the accuracy of power system studies 
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There is an urgent need to develop one or  
more datasets that can become the standard 
for the electricity sector to use as weather  
inputs to planning studies including renewable 
energy integration studies, resource adequacy 
assessments, capacity expansion planning,  
and integrated resource planning.

will be small relative to the enormous effect of increas-
ingly weather-driven capacity, energy-limited resources, 
and electrification. 

The impact of climate change cannot be ignored,  
however, as it is likely to have increasing impacts on the 
power grid, including temperature-driven record loads 
and impacts on transmission and generation driven  
by more extreme and/or frequent weather. If climate  
extremes combine with common-mode failures because, 
for example, temperatures fall outside of those typically 
experienced by the grid, the impacts could be profound. 
However, in this report the focus is on delivering tangible 
information about modeling the distribution of coin-
cident weather outcomes on grids with increasing  
levels of wind and solar. These data are based upon  
real observations of the atmosphere in which the gaps 
between observations have been filled by meteorological 
models that produce results that are physically consistent 
with the initial observations and internally consistent 
across weather variables. 

Long time series produced in this way (especially if they 
are extended in an ongoing fashion) will reveal emerging 
climate trends. However, predicting the future climate 
requires a different approach with much more uncertainty, 
not just in the modeling, but (among other things)  
in assumptions about emissions pathways. The report  
includes a short section that discusses the key caveats  
of climate change on the report’s central concerns and, as 
appropriate throughout, notes how climate change could 
impact its conclusions. It also introduces some of the work 
and techniques being undertaken in the area of climate 
change impacts on power systems. A deeper treatment  
of this topic is recommended for a future task force.

A Roadmap for Meeting Weather Input 
Needs in Power System Modeling

There is an urgent need to develop one or more datasets 
that can become the standard for the power/electricity 
sector to use now, and moving forward for the foreseeable 
future, as weather inputs to planning studies including 
renewable energy integration studies, resource adequacy 
assessments, capacity expansion planning, and integrated 
resource planning. Thoughtfully produced, archived,  
and curated, such data would also be valuable in other 
important tasks associated with the power system,  
including renewable energy resource assessments and  
renewable energy performance analyses, as well as being 
extremely useful for foundational research work to  
examine the relationships between supply and demand 
and weather patterns/climate signals, and for establishing 
possible climate trends. 

There can be no reliable energy transition without  
broadly available, consistent, weather datasets for power 
system studies that meet the criteria outlined above.  
Given public policies that promote or require increases  
in renewable energy, the necessary data can be considered 
a public good—one that is government funded, publicly 
available, and routinely maintained.

There are two stages in the development of an ideal 
weather dataset.

STAGE 1: Validate and Refine Requirements  
and Confirm Need and Fitness

The initial stage of building an ideal weather dataset 
would convene a technical review committee composed 
of expert power system stakeholders, experienced energy 
meteorologists familiar with how power system modeling 

In the near term, the overall impact of climate 
change on the accuracy of power system  
studies will be small relative to the enormous 
effect of increasingly weather-driven capacity, 
energy-limited resources, and electrification.
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is performed for both hypothetical studies and actual 
utility or system planning, experienced numerical weather 
prediction (NWP) modelers whose experience covers 
high-resolution modeling and data assimilation,   
and experts in NWP post-processing methodologies  
including bias correction and downscaling techniques 
employing machine learning techniques. 

The technical review committee would vet and refine  
the dataset requirements; determine possible methods to 
create the sample datasets; using three to seven candidate 
methods, produce sample datasets; and determine whether 
the candidate datasets add value over the controls. It 
would select the method with the best combination  
of cost and accuracy and move to Stage 2.

STAGE 2: Produce Historical Archive  
and Ongoing Process

Once the value of a dedicated process to produce a  
high-fidelity archive is established, the next step is to build 
the archive and operationalize the process of ongoing 
extension using the method selected in Stage 1. The main 
decisions would be how far the archive will go back and 
when operational extension will be performed; the rest of 
the process of developing the data should be relatively 
straightforward and automated.

At this stage, curation of the data will be key to   
its usability and to understanding its limitations and  

uncertainty. The following issues would need to be 
thought through: 

• How to ensure that users can efficiently access the 
data they need

• Building out of a broad observation network to be 
used in properly validating high-resolution output,  
in data assimilation where NWP-based solutions are 
deployed, and in post-processing to reduce systematic 
errors

• Ongoing validation

• User education

• Documentation of alternative data sources

———————

With rising levels of wind, solar, and storage and  
increased electrification, power system planning is  
becoming more complex and more weather-dependent—
with a greater need to accurately model the impacts  
of weather variables on resource adequacy and system 
reliability. Accurate power system analysis requires time 
series data for key weather variables that are temporally 
coincident, have sufficiently high spatial and temporal 
resolution, and are robustly validated. The availability  
of such an ideal weather dataset, together with education 
and coordination between the meteorology and power 
system communities, will equip system planners to  
guide future resource siting and build-out for a   
reliable, high-renewables grid.
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Future reliability is at risk unless we  
understand the range of different supply and 
demand balance possibilities that are driven  
by physically plausible weather combinations—
especially combinations that drive demand, 
generator availability, fuel availability, and 
transmission capacity in ways that stress  
system reliability and resilience.

Introduction

The impacts of weather in the electricity sector  
have always been important, as weather modulates 
demand and impacts much of the infrastructure 

traditionally used to generate and deliver electricity.  
This relationship is growing stronger with the increase  
in weather-driven renewable generation and the growing 
electrification of sectors such as buildings and transpor-
tation. To plan and operate the electricity system reliably 
and cost-effectively, it is imperative to gain more complete 
knowledge of potential weather impacts to the system. 
Future reliability is at risk unless we understand the 
range of different supply and demand balance possi- 
bilities that are driven by physically plausible weather 
combinations—especially combinations that drive  
demand, generator availability, fuel availability (both  
renewable resources and traditional supply), and trans-
mission capacity in ways that stress system reliability  

and resilience. This requires more accurate, more detailed, 
longer, chronological weather datasets than are available 
today to describe the range and likelihood of different 
concurrent weather impacts on electricity system com-
ponents—especially renewable generation—and load.
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The Energy Systems Integration Group convened a  
project team to explore the linkages created by the rising 
weather dependence of the electricity system; describe 
the need for, and the nature of, data to represent these 
linkages; and outline a process for producing ideal 
weather datasets for power system planning studies  
for the increasingly weather-dependent systems of  
the future. This report explores the linkages created by 
the rising weather dependence of the electricity system  
and describes the need for, and the nature of, data  
to represent these linkages. While the same weather  
relationships impact both electricity system operations  
and planning, as well as the development and operation 
of individual renewable power plants, the nature of  
the data needed is different for each application. The  
emphasis here is on the weather data inputs needed  
for power system planning studies for power systems 
with high levels of renewables. This requires correlated, 
time-synchronized data for wind, solar, and temperature  
observations. The report does not include discussion of 
datasets necessary for planning hydropower generation, 
as hydro’s time granularity of months and seasons does 
not require the same level of correlation as needed for 
wind, solar, temperature, and load. The objective is to 
provide information that is useful both to power system 
experts who use these data and to the meteorologists  
involved in creating and providing data and advising  
on their use.

Although there is a growing number of (mostly model-
based) meteorological datasets available for power system 
planning, there are major challenges and gaps to fill. 
These include:
• The lack of sufficiently complete, accurate   

meteorological data to correctly encapsulate possible 
conditions on the electricity system

• A lack of detailed, objective validation of model- 
produced weather data against ground truth, especially 
at times when inaccuracy could yield erroneous  
conclusions about system adequacy

• Misconceptions among data users about the complex 
nature, limitations, and applicability of the data that 
are available

• An overly simplistic application of meteorological  
inputs in estimating the output of renewable generators

• Misconceptions among meteorological data providers 
about how the data they make available are applied

Currently, there are gaps not just in the data needed,  
but in understanding of the needs and capabilities of  
the power system engineering and atmospheric sciences 
communities. Bridging these knowledge gaps is one of 
the primary goals of this report. One consequence of this 
goal is that, for any individual person, certain content 
may seem somewhat basic and other content may seem 
advanced. Where this happens, readers are encouraged  
to reflect on how they can help others with different  
expertise or can seek support across the increasingly large 
overlap of meteorology and power systems engineering 
professions. Readers may also refer to the glossary at  
the end of the report.

This report shows how methods and data used in  
power system analysis need to become much more  
sophisticated and must evolve away from a focus on  
load- and temperature-driven reliability events. The data 
and models being used are insufficient to accurately  
determine the important relationships between load  
and renewables across sufficiently long periods for  
probabilistic analysis. This is especially important given 
that time series data for different weather variables  
are not independent. Their correlation means that the 
common practice of increasing the range of possible  
scenarios by making separate random draws for different 
variables in correlated datasets is not appropriate. To 
cover the range of possible outcomes, much longer  
datasets need to be produced.

Recent Studies

Several recent studies have recognized these needs. For 
example, the changing nature and increased importance 
of weather dependence, and why data to quantify it are 
essential, are illustrated in Novacheck et al. (2021) and 

The correlation among different weather  
variables means that the common practice  
of increasing the range of possible scenarios  
by making separate random draws for   
different variables in correlated datasets is  
not appropriate. To cover the range of possible 
outcomes, much longer datasets need to  
be produced.
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Bloomfield et al. (2021). Recent studies that incremen-
tally improve methods for incorporating weather in  
power system models include Voisin et al. (2018) and 
Nahmacher et al. (2016), with some incorporating  
stochastic methods to represent a wider range of   
scenarios and extremes, including Wang et al. (2016) and 
Dyreson et al. (2022), or stochastic methods that capture 
hydrometeorological variability, as in Su et al. (2020). 
Work is being done in Europe to produce a weather  
inputs database that is future-proofed—able to serve  
the needs of power system modelers and planners as the 
transition to a high-renewables grid proceeds—and cap-
tures some aspects of expected climate change pathways, 
as discussed in Dubus et al. (2022). The Energy Systems 
Integration Group (ESIG) Redefining Resource Adequacy 
Task Force’s report discusses how system modeling tech-
niques must change, including consideration of weather 
dependencies, to better quantify resource adequacy in  

the evolving system and points to the insufficiencies  
of currently available data (ESIG, 2021).

Lack of Data of Sufficient Quality

While there have been great strides in the availability  
of high-resolution meteorological data for power system 
modeling studies over the past decade (especially fields 
for determining wind and solar output), no datasets  
exist that meet the requirements with sufficient accuracy, 
spatial and temporal resolution, or record length to  
capture all of the possible drivers of supply and demand 
balance in the new paradigm. This is specifically true for 
the United States and generally true globally. In addition, 
the data that are available have not been sufficiently vali-
dated to assess the uncertainty of their representations  
of truth, and thus their appropriateness for use in power 
system planning. Where validation has been performed, 
biases and limitations have been discovered even in the 
current best-in-class data available (see, for example, 
Sharp (2022)). Data limitations have led to gross  
simplifications in weather inputs even where practitioners 
are earnestly attempting to robustly address the added 
complexity. To fill data gaps, scientifically questionable 
“bootstrapping” methods are being used to synthesize 
long data records from whatever limited data are avail-

No datasets exist that meet the requirements 
with sufficient accuracy, spatial and temporal 
resolution, or record length to capture all of the 
possible drivers of supply and demand balance 
in the new paradigm.
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able from operational projects, leading to combinations 
of weather variables that are either not physically  
plausible or occur in the bootstrapped data at frequencies 
that are not representative of observed frequencies.1 In 
some cases, modeling limitations prevent the incorpora-
tion of multiple years of weather data even where they  
do exist. 

Another important element affecting weather-driven 
supply and demand in power system planning is, of 
course, climate change. In the past it was assumed that  
a sufficiently long record of past conditions (typically  
at least 30 years) was representative and predictive of  
the range of future weather conditions. However, the  
assumption of a stationary climate is no longer valid.  
This report is focused on the types of weather data  
that are crucial to collect or simulate using models for 
application in rigorous power system planning studies, 
with the complex topic of modeling climate change  
being mostly beyond its scope. However, while it is  
reasonable to assume that the overall distribution of 
weather impacting wind and solar generators will not 
change radically in the coming one to two decades, espe-
cially compared to the impact of adding large amounts  
of renewable generation to power systems, the influence 
of climate change is important to keep in mind, especially 
regarding how changes in temperature may concurrently 
drive demand and the availability of generation to meet 
it. Therefore, we include caveats that climate change 
places on the discussions below where appropriate  
and summarize these in a brief section at the end of  
the report. The project team views the present work as  
a necessary precursor to a broader discussion of how to 
incorporate climate change into power system modeling 
weather inputs, which is worthy of follow up work.2 

Key Needs Highlighted by This Report

There are many expert meteorologists and power systems 
engineers, but few people have more than a basic grasp 
of both meteorology and electricity systems, or fully un-
derstand just how much more complex a weather-driven 

system is than one in which weather mainly modulates 
demand. In addition to resulting at times in overly simple 
methods to synthesize longer datasets, the lack of holistic 
understanding creates additional issues that must be  
addressed now even as more complete data become  
available. For example, model data are often used as  
if they have the accuracy and degree of uncertainty of 
observations, yet their representativeness in time and 
space is a function of the model configuration used and 
model inputs. In addition, weather models can have 
higher accuracy for some weather conditions and lower 
accuracy for others; therefore, the quality of modeled 
weather is also a function of the weather that is occurring 
at any given time and place. At the other end of the 
spectrum, mistrust of weather model data sometimes  
results in useful model data being passed over in favor  
of inputs that are simpler and more familiar but less 
complete. For instance, overly simple models are often 
used to extrapolate data from one location to another or 
to estimate one weather variable using another variable. 
There is an urgent need for education, coordination,  
and cooperation between power system experts, meteo-
rologists, and climatologists (Coughlin and Goldman, 
2008; Craig et al., 2022; Bloomfield et al., 2022).

These data and modeling challenges are leading to the 
inappropriate “black box” application of meteorological 
inputs, the use of methods with many limitations to fill 
data gaps, and a lack of appropriate consideration of the 
uncertainty in modeling results that may lead to poor 
decisions in power system planning. With hundreds of 
billions of dollars of new infrastructure being built for 
the energy transition, it behooves the sector to address 

Model data are often used as if they have  
the accuracy and degree of uncertainty of  
observations, yet their representativeness  
in time and space is a function of the model  
configuration used and model inputs.

1 Bootstrapping is a statistical procedure that resamples a single dataset to create many simulated samples. 

2 Discussions of the challenges that climate change adds to this subject can be found in Craig et al. (2018), Craig et al. (2019), and Bloomfield et al. (2021),  
and examples of studies that incorporate climate change in power system modeling in at least one meteorological variable include McFarland et al. (2015), 
Schlott et al. (2018), Craig et al. (2019), Miara et al. (2019), Peter (2019), Turner et al. (2019), Steinberg et al. (2020), Voisin et al. (2020), Hill et al. (2021), 
Ralston Fonseca et al. (2021), and Cohen et al. (2022). In addition, the Electric Power Research Institute recently launched its Climate Resilience and  
Adaptation initiative (Climate READi), which takes a broad approach to climate change impacts on the electricity system, aiming to help people across   
the industry identify optimal investments for power systems’ climate resilience.
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these challenges. While these challenges are not trivial, 
the cost of overcoming them is trivial compared to the 
risks presented by the current data inadequacies.

This report documents the weather-related challenges in 
power system planning and describes a transdisciplinary 
approach to overcoming them. First, the project team 
gives an overview of the different sources of meteoro-
logical data for power systems engineers and provides 
context from which meteorologists can better understand 
the data needs of power systems engineers. We describe 
the datasets that are currently available and show how 
they are not sufficient for the tasks at hand. We conclude 
by offering recommendations for producing robust,  
future-proof datasets that better serve the power systems 
community and examples of possible approaches for  
putting existing data to use.

The report’s major sections are as follows:

• Section 1, “The Challenges of the Evolving Weather/
Energy Nexus,” looks holistically at the impacts of  
the weather on electricity systems, describes systems’ 
increased weather dependence, and articulates the 
consequences and resulting meteorological needs  
of power system planning processes.

• Section 2, “Meteorological Data Fundamentals  
for Power System Planning,” presents an overview of 
meteorological data for the power systems audience, 
covering the different sources of data available to  
the community and their benefits and limitations.

• Section 3, “Weather Inputs Needed for System  
Planning,” describes the weather-sensitive inputs to 
system planning models and discusses the weather 
data needed to produce the inputs. For instance,  

power system models’ ability to estimate wind  
generation requires knowledge of wind speed and  
direction as well as several other secondary weather 
variables.

• Section 4, “An Ideal Weather Inputs Database for 
Power System Planning, and Comparison to Currently 
Available Data,” provides a comprehensive list of 
weather variables needed for system planning studies 
and articulates in detail the necessary attributes of 
such data (resolution, length, validation, etc.). The  
section goes on to describe the data currently available 
and compare them to the desired data and attributes.

• Section 5, “Project Description for Producing Robust 
Weather Inputs Data,” reiterates the urgent need for 
comprehensive datasets that meet the requirements 
outlined in Section 4, and outlines a plan for producing 
the required data.

• Section 6, “Guidance for Using Existing Weather 
Inputs,” presents examples of promising approaches 
for effectively using existing weather data: what the 
gaps and consequences of these gaps are, how to use 
the existing data most effectively, and what to be 
aware of as improved data become available.

• Section 7, “The Impact of a Changing Climate,” 
briefly discusses the consequences of climate change 
for power system modeling and the weather inputs 
used. 

• Section 8, “Summary and Next Steps,” summarizes 
the key takeaways of this report including the current 
status, need for, and benefits of taking action; the  
requirements for data that will address the current 
gaps and limitations; and how to produce such data. 
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S ECT I O N  1

The Challenges of the  
Evolving Weather/Energy Nexus

3 For definitions of terms that some readers may be unfamiliar with, please see the glossary at the end of the report.

Until recently, the biggest weather impact on elec-
tricity systems was temperature modulating load, 
with the coldest winter days and warmest summer 

days setting the amplitude and timing of peak demand, 
and extreme weather events driving outages of generation, 
transmission, and distribution. Today, as wind and solar 
resources comprise an increasingly large portion of the 
supply, on some systems the effect of temperature on  
demand has now been surpassed by the influence of 
weather impacting supply via wind and solar generation. 
At the same time, the weather dependence of load is  
increasing due to electrification of heating, cooling,  
and transportation (Figure 1, p. 7).3

These variables are interrelated in complex ways that vary 
according to the daily, seasonal, and interannual variability 
of weather. In addition, the distribution of different com-
binations of each may be evolving in time due to changes 
in the Earth-system energy balance that is being driven 
by rising greenhouse gas concentrations. This linkage is 
particularly complex, as it is not yet well understood how 
a changing climate will affect weather that impacts wind 
and solar resources, and there is little certainty around 
how quickly greenhouse gas emissions will be abated.

The remainder of this section will discuss the nexus of 
weather and energy and its evolution, with a focus on the 
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The primary linkages between variables in the weather and climate system (gray) and the electricity system (orange). There are 
many feedbacks between the environmental variables; the strongest links are shown in dashed gray lines. Dark blue lines indicate 
direct dependencies that are most important in everyday operation of the electricity system, while orange lines indicate dependencies 
that do not typically have a large impact on a daily basis but can have a profound impact in particular circumstances or combinations. 
For instance, freezing temperatures, high humidity and/or freezing rain can cause wind generation to become  unavailable due to 
icing, and extreme winds can damage transmission and distribution infrastructure. Light blue lines denote where the strength of 
dependence is highly variable and depends on asset type and location.

Source: Energy Systems Integration Group.

F I G U R E  1 

Electricity System Weather-Dependence

Aerosols Clouds 
type, cover, depth

Humidity Pressure

Groundwater 
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evaporation, runoff

Snow 
cover, pack,  

melt, evaporation
Wind

Solar
Generation

Hydro 
Generation

Thermal
Generation

Load Transmission 
& Distribution

While all environmental variables are interdependent, these are some of the strongest internal links.

Dependence of the electricity system on the climate system.

Strength of dependence is highly variable and depends on asset type and location.

Degree of dependence can be greatly amplified by specific weather and climate conditions.

Typical magnitude is approximated by the thickness of the lines.

Wind
Generation

Insolation

TemperaturePrecipitation 
type, amount

implications for power system planning and modeling. 
Appendix A provides additional insight into the inter-
section of weather and energy including a broader look 
at how it impacts other power system functions such as 
real-time operations and renewable generation resource 
assessment and performance assessment.

Increasingly Weather-Driven Supply

Outside of hydro-dominated electricity systems, tem-
perature was, until recently, the primary weather variable 
impacting electricity supply. While the impact of weather 
on supply is still smaller than on demand today, the  
effects are significant and will continue to grow. The  
efficiency of thermal plants is reduced with warmer  
ambient air and higher cooling-water temperatures. 

Temperature also influences the reliability of thermal  
and renewable generators, with periods outside of typical 
ranges more likely to see forced outages (Murphy, Sowell, 
and Apt, 2019). Additionally, cold temperatures can  
affect the availability of the natural gas supply to gas-
fired generation through conflicts with residential heat-
ing, decreased pipeline pressure, and increased failures  
of gas transportation infrastructure. Transmission and 
distribution systems are also impacted by weather.  
Temperature and wind can affect transmission line  
ratings, precipitation patterns on scales of days to years 
impact hydro output, and drought increases the like- 
lihood of wildfires that can impact the transmission  
system. And weather extremes including icing, snow, 
high winds, and lightning all impact transmission  
and distribution systems.
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Today, supply-side weather dependence is increasing  
rapidly due to the rising levels of wind and solar genera-
tion, with wind speed and direction and solar irradiance 
becoming chief drivers. Wind power output is especially 
sensitive to small changes in wind conditions, because 
the power density in moving air (wind) is proportional  
to the third power of wind speed (if the wind speed dou-
bles, the power density increases by a factor of 23=8). 
Both wind and solar generation are impacted by tem-
perature (which on calm, hot days can significantly  
reduce solar panel efficiency), humidity, and precipitation 
(of all types), as will be detailed in Section 3, “Weather 
Inputs Needed for System Planning.” Solar and (to a 
lesser extent) wind generation are also impacted by 
smoke and other atmospheric aerosol loads, both of 
which are strongly influenced by weather patterns.

Weather impacts on renewables today and going forward 
are higher in amplitude than the chiefly temperature-
driven weather impacts on the electricity system histori-
cally. Both wind and solar resources can go to zero for 
periods of time. In addition, unlike for hydro generation 
in which the impacts of weather events affecting water 
inflow exhibit significant buffering in time and space, 
changes in weather at the location of wind and solar 
generators impact their output immediately. The weather 
impacts on variable renewables are also more complex. 
Wind and solar generators can be located in a diverse 
range of locations, and resource conditions can vary  
considerably across short distances and change rapidly  
in time. The conditions in one part of a wind plant, for 
example, can vary considerably from those in another 
part of the same plant, especially in complex topography.

Increases in average ambient temperatures and the  
frequency of extremely warm days will lead to more 
weather-related transmission derates and more thermal 
plant derates and outages related to ambient temperatures 
and cooling water temperatures. It is also speculated that 
rain, snow, and extreme cold may become more prevalent 
as the climate changes (though the atmospheric science 
community has not reached a consensus on this matter), 
which would further increase weather-related outages  
for all generator types.

This significantly greater supply-side weather dependence 
and the lack of data to fully quantify the impact at any 
given location and time (past or future) is a primary  
motivator for this report.

Increasingly Weather-Influenced   
Demand and Increasing Share   
of Weather-Dependent Distributed   
Energy Resources

The electrification and decarbonization of transportation 
and the built environment will dramatically increase 
loads. Increased use of electric heat will increase winter 
loads, and increased air conditioning use, driven by  
overall warmer temperatures and general growth in 
adoption, will increase summer loads. Efficient heat 
pump technology reduces the overall load growth of the 
transition to electric heat, but in colder environments,  
on the coldest days loads will spike when less efficient 
supplemental resistive heating is necessary. The use of 
electric transportation will of course greatly increase 
overall loads and has a weather-dependent component 
associated with energy used to condition the vehicle  
cabin.

The impact of weather on demand shape and amplitude 
is being changed by increasing levels of behind-the-meter 
(BTM) generation (mostly rooftop solar). The impact of 
BTM generation is essentially another incarnation of the 
increasingly weather-driven supply discussed above, but 
it has the additional complexity of tending to be highly 
distributed and embedded in demand profiles because 
detailed resource data are typically not available.

Sensitivity of load to weather is increasing  
and becoming more complex. Models used  
to predict load growth and models used to 
forecast load are increasing in sophistication 
and require more and higher fidelity data.

Thus, the sensitivity of load to weather is increasing  
and becoming more complex. Temperature dependence 
is increasing, and variables impacting solar generation  
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are becoming important. As a result, models used to  
predict load growth and models used to forecast load  
are increasing in sophistication and require more  
and higher fidelity data.

Increasingly Vulnerable Transmission  
and Distribution Infrastructure

The dependence of transmission and distribution  
systems on weather and weather extremes is well known. 
However, the vulnerability of transmission and distribu-
tion systems is rising due to changes in extreme events 
and their frequency, especially events like region-wide 
temperature excursions. The transmission of power will 
play an important role in the adoption and integration  
of variable renewable resources, and some weather events 
will concurrently stress every part of the power system; 
therefore, the planning of mitigation and response  
strategies requires a better understanding of the interplay 
of weather drivers of supply and demand and concurrent 
weather drivers of transmission and distribution impacts.

Increasing Interdependence of Weather 
Influence on System Components and  
Increasing Complexity

While the ongoing increase in weather dependence 
across supply, demand, and transmission and distribution 
is clear, there is a concurrent increase in the complexity 
of the weather impacts on these areas as well as increased 
interdependence among the weather impacts. The  
relative uniformity of temperature across a region meant 
that in the past, relatively simple relationships could be 

developed between the temperature at a small number  
of weather observation sites within population centers 
and the load expected within a balancing area, and  
between the temperature measurements near thermal 
generating facilities and the outage probability at  
the facility.

However, simple relationships between individual obser-
vational data points and wind and solar resource within  
a region are much less common, and the resource can 
vary dramatically across short distances. For example, 
weather that brings cold temperatures may result in 
above-normal wind speeds in one part of the region  
and below-normal wind speeds tens of miles away,  
or possibly even closer. The same is true for cloud cover. 
These relationships between weather variables and  
solar or wind power output are defined by interactions 
between the big picture (synoptic and mesoscale) weather 
conditions (which primarily drive temperature) and local 
surface features; the relationships are highly complex  
because they are defined by multiple weather parameters. 
At the same time, wind and solar generation facilities are 
widely distributed and located away from populous areas 
where weather observations are prevalent. They also cover 
large areas that can have significant weather variation 
within them. Therefore, observations that are representa-
tive of conditions at existing or future renewable facilities 
are often not available, and where they are, they usually 
do not cover a representative and sufficiently long period. 

To recap, multiple weather variables are driving both 
supply and demand in ways that range from strongly 
synergistic to strongly antagonistic, and these variables 
vary significantly across an electricity system footprint 
and across time. Data defining the distribution of these 

Multiple weather variables are driving both 
supply and demand in ways that range from 
strongly synergistic to strongly antagonistic, 
and these variables vary significantly across  
an electricity system footprint and across  
time. Data defining the distribution of these 
variables in time and space are not currently 
collected (or modeled) at anything close to  
the required fidelity.
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variables in time and space are not currently collected  
(or modeled) at anything close to the required fidelity.

As noted above, thermal generation derates and outages 
also have weather dependencies, as do transmission and 
distribution. When combined with the rapidly growing 
share of variable energy resources in a power system’s 
generation mix, this results in very complicated relation-
ships linking weather and the supply of, demand for, and 
transportation of electricity, especially when considering 
that the line between generation and consumption, and 
transmission and distribution, is now blurred by BTM 
generation. Periods of risk and their causes are radically 
shifting, and the nature and diversity of system stress are 
becoming much more complex, because they are driven 
by coincident weather impacts on renewable supply 
(which will vary across the footprint), load, generator 
availability, transmission, distribution, and hydro genera-
tion. As a result, each part of the system can no longer  
be considered independently. It is crucial to have data 
that can allow the envelope of possible supply and  
demand balance combinations to be quantified for  
existing and hypothetical future electricity systems to  
assess system reliability across the range of expected 
weather conditions.

Climate Change: The Wild Card in the Deck

Climate change poses an additional layer of complexity 
and uncertainty in power systems’ weather dependence. 
In the past, climatology that was measured over a  
sufficiently long period was assumed to be stationary,  
so historical temperature and (for hydro) water inflow 
observations were mostly sufficient to model the primary 
impact of weather on future loads and generation. How-
ever, the assumption of stationarity is no longer valid. 
Not only is the power system becoming much more  
influenced by the weather, but the weather itself is  
increasingly deviating from historical norms.

The effects of a changing climate on electricity systems 
are potentially large, especially as these systems become 
increasingly weather-dependent, and some studies have 
started to modify weather input data to assess electricity 
system sensitivity to temperature and precipitation 
changes. There is some degree of scientific consensus  
regarding expectations around average temperature and 
to some extent changes in its extremes. There is also 

some consensus regarding precipitation changes, although 
there is still considerable uncertainty. However, the  
impacts of climate change on wind and solar resources 
are only just beginning to be examined at scales necessary 
to model their impact on supply and assess how these 
impacts correlate to temperature and precipitation 
changes. Global climate models (GCMs) generally  
cannot predict changes in wind and solar resources at 
sufficient spatio-temporal resolution for use in system 
planning models. When output from different GCMs  
is downscaled (using methods discussed in the next  
section), large disagreements are seen between the  
different models for wind and solar irradiance, and  
these will change in the future. Further, there are limited 
options to determine which resultant dataset, if any, is 
likely to be most representative of future conditions. In 
short, the uncertainties associated with the impacts of 
climate change on the electricity system are potentially 
large and not yet well understood. 

That said, large changes are generally not expected  
in the overall spatio-temporal wind and solar resource 
distributions over the coming decade. For these reasons, 
and because, at least in the short term, it is more urgent 
to quantify the impact of weather variables on rapidly 
expanding renewables and rapidly changing demand,  
this report does not attempt to provide definitive recom-
mendations around producing and using weather inputs 
that incorporate climate change projections into resource 
adequacy and other system planning studies. Section 7, 
“The Impact of a Changing Climate,” summarizes cen-
tral questions about the impacts of climate change on 
supply and demand in future power systems and the  
areas where research and development are needed. 
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The Need to Understand and Quantify 
Electricity System Weather Dependence

Because the impact of weather on the electricity system 
has broadened, it is no longer enough to simply ensure 
there is enough generation to meet the peak loads for the 
climatologically hottest and/or coldest days. While in the 
future the overall electricity consumption will still peak 
on the hottest and coldest days, demand will no longer 
be primarily described as a function of time of year, day 
of week, time of day, and temperature, and utility-scale 
generation will no longer be simply a function of avail-
able capacity and outage rates. Both demand and supply 
have large, rapidly growing components that are influ-
enced in numerous ways by different weather variables. 
The weather variables all vary in time and space and in 
ways that are interrelated. This increase in the number  
of weather variables, and the number of locations at 
which these variables have a significant impact, means 
that much more weather data are needed to estimate  
the weather impact on the electricity system at any given 
moment. Further, weather data spanning many years are 
needed, because it is necessary to determine the range of 
possible outcomes of these variables and their likelihood 
of occurring. The weather variables in these data must 
coincide in time and represent realistic chronology of 
weather patterns, because the variables are interrelated  
by atmospheric physics and this physics also defines  
their evolution in time. Thus, the data must come from 
observations or be synthesized by models that correctly 
represent atmospheric physics.

The key weather data required to analyze weather  
impacts on power systems have several critical gaps:  
either they are not observed at the required locations,  
the observation record is too short to meet all the needs 
of the sector (especially for modeling used in system 

planning), or (typically for operational purposes) a pre-
diction of future conditions is required. To synthesize 
these data, physics-based models are commonly used, 
particularly numerical weather prediction (NWP) models. 

It is important to note that the term “prediction” is 
something of a misnomer in this context. While it is true 
that these models are used to predict future states of the 
atmosphere, they are also often used to synthesize past 
data in a way that is consistent with atmospheric physics. 
Therefore, the terms “forecast” and “prediction” are often 
used throughout this report to mean making estimates 
about periods in the past, which can be confusing to 
non-meteorologists. See Box 1.

B OX 1 

Three Definitions of “Forecast”

The term “forecast” is used here in three distinct ways:

• To predict what is expected in the operational 
time frame (e.g., day-ahead or hour-ahead) to  
conduct reliable and efficient market and power 
system operations.

• To predict how a time series of a parameter such   
as load may change in future years based upon  
historical relationships of weather and past out-
comes, and the expected overall change in the  
parameter’s magnitude.

• To estimate a time series for a weather variable  
for a period in the past at locations for which no 
observational data are available, by using available 
weather data and a model. Typically, numerical 
weather prediction (NWP) models are used, and 
the main variants of this process are reforecasting 
and reanalysis, which are covered in detail in  
Section 3, “Weather Inputs Needed for System 
Planning.” While the data being predicted are for  
a period in the past, the models are the same as 
those used for weather forecasting, hence the term 
“forecast” is often used by meteorologists to refer 
to this modeling of periods in the past. However, 
because the term “forecast” has a strong connotation 
of “future” for most people, in this report we strive 
to use terms other than “forecast” when referring 
to the past—such as reforecast, reanalysis, modeled, 
and simulated—to minimize confusion.

While in the future the overall electricity  
consumption will still peak on the hottest and 
coldest days, demand will no longer be primarily 
described as a function of time of year, day of 
week, time of day, and temperature, and utility-
scale generation will no longer be simply a 
function of available capacity and outage rates.
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Operations

To operate the electricity system efficiently, an operator 
needs to use the lowest-cost generators available when-
ever possible, which are usually wind, solar, and hydro,  
as these have no fuel costs. Wind and solar generation 
are driven by weather patterns occurring in real time, the 
same weather patterns driving demand. Thus, operators 
need to have not just quality forecasts of temperature at 
load centers to predict demand, but also quality forecasts 
of the variables defining wind and solar output at every 
wind and solar generation facility. Wind and solar gen-
eration forecasts have advanced considerably in the past 
decade and can provide a reasonably good view of what 
renewable generation will be available for immediate  
dispatch, in the next few hours, and a day or two ahead. 
Operators can use these along with appropriate operat-
ing margins to ensure that low-marginal-cost wind and 
solar generation can meet as much load as possible, while 
ensuring that other resources are available to meet the 
balance of load in a least-cost and secure manner, as well 
as make up any shortfall due to imperfect load, wind, 
and/or solar forecasts and unplanned generator outages.

System Planning

Forecasts in the operational time horizon, however, do 
not provide the information needed for the many ways 
power system planning tools and methods incorporate 
weather data. For example, ensuring that sufficient  
generation capacity is available in periods of scarcity  
requires knowledge of the conditions that will drive  
scarcity, which are increasingly weather-dependent  
and increasingly complex. This is the realm of system 
planning, where the objective is to ensure that resource 
adequacy—supply meeting demand—is maintained in a 
manner that meets cost and policy goals. If a policy goal 
is to reduce the use of fossil fuel generation, non-fossil 
resources must be deployed in a way that is cost-effective 
and, as more fossil plants are retired, still ensures resource 
adequacy. If the non-fossil resources include wind and 
solar, this means having a complete picture of how  
the portfolio of those resources will perform across all 
reasonably expected demand situations while accounting 
for the availability of hydro and thermal generation  
and any transmission and distribution constraints. This 
requires a database of weather information that has   
sufficient geographical and temporal resolution to  

estimate the concurrent effects of weather on every 
weather-driven system component.

In power system planning, probabilistic resource adequacy 
analysis evaluates whether a power system has sufficient 
resources to serve demand, across a wide range of uncer-
tainty arising from fluctuations in load, fluctuations in 
the availability of renewable resources, and unplanned 
generator outages. Each of these uncertainties is   
fundamentally driven by weather variability.

To quantify this uncertainty, resource adequacy analysis 
is conducted in a probabilistic manner across hundreds 
or thousands of samples, each of which varies load,  
renewable resource availability, and forced outages, to  
determine the likelihood of different scenarios occurring. 
It is critical that these samples capture the appropriate 
range of potential weather outcomes, which requires 
evaluating many years of weather data. Often, between 
10 and 40 years or even more of weather data are needed 
to capture this range, with the necessary time series  
increasing in length as the number of interdependent 
weather variables increases the possible range of supply 
and demand outcomes.

The introduction of large shares of energy storage and 
flexible loads also requires that data be evaluated in a 
chronological fashion, as the availability of these energy-
limited resources during a scarcity event is dependent on 
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The weather data needed for power system modeling  
for planning purposes are central to the purpose of this 
report and are described in more detail in Section 3, 
“Weather Inputs Needed for System Planning.”   
Subsequent sections then discuss how to provide the 
needed data and offer guidance around how to proceed 
in the meantime until data specific to the need become 
available. 

Analysis of Renewable Resource Operation, 
Planning, and Performance

In addition to the broad categories of system operations 
and system planning, weather data are also needed for  
a range of renewable resource development activities,  
including identification of prospective sites, evaluation  
of projects’ generation expectations and variability,  
generator placement (especially for wind turbines),  
and optimal sizing and siting of battery storage. These 
activities require the same data and a similar temporal 
length as those needed for power system planning, but 
they focus on small geographical areas and the specific 
variables associated with the resource type. At the same 
time, they often require more detailed spatial resolution. 
Weather data are also vital for renewable resource project 
operations and maintenance, and power scheduling and 
participation in market processes handled by renewable 
facility operators. Like for system operations, these data 
are usually current observations or short-range forecasts 
of future conditions but are focused on the specific project 
geography. Lastly, weather data are used in performance 
analysis of renewable resource projects to determine  
the fuel (renewable resource) availability and other  
environmental conditions and compare them to  ‘ 
generator output.

—————————

In summary, the weather and electricity sector nexus  
is strong and growing, and there are many needs for 
weather data in power system planning and operations. 
This report is focused primarily on the data needed for 
system planning, specifically, for probabilistic resource 
adequacy analysis and capacity expansion modeling. The 
weather data needs in these areas span large geographical 
areas across dozens of historical and future weather years. 
The report describes the needs in detail and proposes  
an approach to robustly fulfilling them.

If renewable generators, especially wind plants, 
are strategically placed not only where average 
production is good but where high production 
occurs when demand is high, this resource  
diversity leads to more steady supply and  
fewer risky periods.

the system conditions in hours both preceding and  
following the event. Weather data need to be available 
chronologically on at least hourly timescales. In addition, 
the probabilistic resource adequacy analysis should  
evaluate correlation across uncertainties. While traditional 
resource adequacy assessments treated load, availability 
of renewables, and forced outage rates as uncorrelated, 
actual practice has shown that each of these can be highly 
correlated due to underlying weather conditions. This  
is especially true during extreme weather events when 
the system is most stressed.

The ability to estimate the performance of wind and  
solar resources using a full/accurate understanding of 
their weather dependence will also give system planners 
the tools to refine their approach to siting these resources. 
Resource diversity can play a powerful role in smoothing 
out the amount of renewable generation available across 
a system’s footprint. However, if renewable plants are  
sited only where the resource is best on average on an 
annual basis, for example, this lack of resource diversity 
means that times of high demand and/or low resource 
become periods with risk of scarcity. However, if renew-
able generators, especially wind plants, are strategically 
placed not only where average production is good but 
where high production occurs when demand is high, this  
resource diversity leads to more steady supply and fewer 
risky periods. The current ad hoc build-out of renewable 
resources is unlikely to see the true benefits of that  
diversity. Although even intentionally planned resource 
diversity will not eliminate all mismatches between  
demand and the timing of high renewable energy supply, 
weather patterns are governed by dynamical rules and 
tend to cluster around certain outcomes (for instance,  
the wind does always blow behind a cold front). Thus, 
careful planning of renewable resource diversity, and 
transmission, can greatly mitigate variability and  
supply/ demand mismatch.
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S ECT I O N  2

Meteorological Data Fundamentals  
for Power System Planning

This section gives an overview of the nature of  
meteorological data available for use in power  
system planning. It is important for users to be 

aware of the challenges when applying weather data to 
power system planning. Today’s available observations are 
generally too sparse to be used for renewable generation 
estimates, and data from weather models often used as  
a proxy for observations have limitations that need to  
be understood to estimate their impact on the results  
of power system modeling. Further, simple models some-
times used to synthesize the wind and solar profiles for  
a given day based on observed predictors like temperature 
may appear to produce a long time series that looks  
as though it reflects reality quite well; however, careful  
validation will usually reveal a poor match with reality,  

especially when one looks at coincident combinations of 
different variables across a region. (For definitions of terms 
that some readers may be unfamiliar with, please see the 
glossary at the end of the report.)

Need for Accurate, Long-Duration,  
Chronological Weather Datasets  
for Power System Studies

Power systems span continents, with weather events in 
one corner of the grid having an impact on operations 
hundreds of miles away. Therefore, analyzing how weather 
will impact the electricity system means knowing, with a 
reasonable degree of certainty, the evolution of weather 
in time and space that impacts electricity system   
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supply (generation), demand (load), transmission,  
and distribution.

Accurately representing the state of a modern electricity 
system where wind and solar generation are distributed 
over wide areas and often far from load centers, requires:

• Knowledge of the weather variables driving the  
generation potential at the location of every weather-
driven generator, as well as every potential generation 
location if portfolio expansion modeling is being  
conducted

• Knowledge of the weather variables driving demand 
at load centers

• Details of weather affecting other system assets, for 
example, weather that may cause thermal generator 
derates or outages or changes to the transmission  
or distribution system. In addition, the hydrological 
state needs to be known if there is significant  
hydro generation.

(for instance, how storage is charged and discharged). 
Because many power systems analysis tasks attempt to 
evaluate future portfolios of weather-driven generation, 
including determining where those generators should be 
built, the weather data need to be known not only at the 
location of current generators, but all other plausible 
generator locations.

Synthesizing Weather Datasets with Models: 
Why Do It and Why Is It Difficult?

When available, direct observations are the most  
accurate way to characterize atmospheric variables.  
However, such an archive is not available, and it would 
be impractical to build, as it would require a much denser 
network of atmospheric measurements than currently 
exists, with instruments every two or three kilometers in 
some locations. This would be prohibitively expensive to 
build and maintain. In any event, it would take at least a 
decade of gathering observations before anything close 
to a representative archive would be available.

As a result, models are used to fill in the temporal 
and spatial gaps. These range from simple models, often  
developed by power systems engineers with little or no 
meteorological training, to highly sophisticated physics-
based weather models involving millions of lines of code 
and running on the world’s most powerful supercomputers. 
Some of the latest artificial intelligence methods are  
also starting to be deployed in conjunction with physics-
based models, to reduce the enormous computational  
requirements of running the physical models at high 
spatial resolution.

Simple models are easy to understand but usually  
inaccurate. On the other hand, physics-based models 
tend to produce data that are much more accurate, but it 
is important to understand that synthetic data produced 
this way can still contain large errors even when they 
look realistic. In addition, expert knowledge is required 
to understand the inherent uncertainties in the modeling 
process, because the same weather model can produce 
vastly different output depending on how it is configured. 
The addition of artificial intelligence can further  
obfuscate how data are derived.

The atmosphere has many variables, including wind 
speed and direction; temperature; pressure; water vapor 

Long records are crucial to capture the range 
of atypical weather combinations that produce 
weather-related risk, and because the number 
of variables increases, the range of atypical 
combinations that produce risk also grows  
and requires longer records to capture.

Planners use historical time series of weather records  
to project likely future scenarios of supply and demand, 
adjusting for known or predicted changes in both. Power 
system studies, especially resource adequacy analysis,  
require many years (ideally several decades) of chrono-
logical weather data that capture the range of potential 
weather variables affecting load, resource availability, and 
forced outages. Long records are crucial to capture the 
range of atypical weather combinations that produce 
weather-related risk, and because the number of variables 
increases, the range of atypical combinations that produce 
risk also grows and requires longer records to capture. In 
addition, energy-limited resources (such as storage and 
flexible demand) create the requirement that the weather 
data not only be physically consistent in space, but also 
accurately represent the correct chronological evolution 
of the weather, as this will impact how they are managed 
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concentration (humidity); hydrometeor concentration, 
phase, and size (cloud droplets, rain drops, cloud ice, hail, 
snow); aerosol type, concentration, and size; incoming 
solar radiation; and outgoing infrared radiation. Each 
variable interacts with the others and responds to charac-
teristics of the Earth’s surface: altitude, slope, reflectivity, 
roughness, temperature, moistness, etc. The relationships 
among all of these factors are highly non-linear: multiple 
different variables influence one another, and changes 
may be muted or amplified in different circumstances. 
However, these relationships follow well-defined physical 
laws and are not random. This creates a dynamic, con-
stantly changing environmental system with an almost 
infinite number of possible states with some variables 
changing rapidly over small distances. 

Like the atmospheric system, the power system is also 
interconnected in time and space. Events occurring in 
one part of the system impact others and evolve in time. 
This is also true of the interactions between the two  
systems (e.g., a change in wind speed at the location  
of a wind generator affects the evolution of the weather 
elsewhere and changes the electricity system state). 
Therefore, each state has a specific impact on supply,  
demand, and other weather-influenced components  
of the electricity system.

Therefore, models that synthesize data for use in power 
system analysis ideally should capture the physical  
and dynamical relationships between weather variables 
and produce weather states that are physically plausible, 
evolve realistically in time and space, and produce  
distributions of conditions like those that are observed. 
A primary motivation of this section is to help users of 
synthetic data better understand how difficult this is  
and communicate the limitations these challenges  
often confer onto synthetic data.

Importance of Understanding the Types  
and Sources of Data Uncertainties

The difference between an observation and reality 
(“truth”) is mainly a function of the measurement  
uncertainty of the instrument used to take the observation. 
However, the difference between synthetic weather data 
and truth, in addition to being subject to uncertainties  
in all the observations used in the modeling process, is 
mostly a function of the modeling method. Therefore, 

Models that synthesize data for use in power 
systems analysis ideally should capture the 
physical and dynamical relationships between 
weather variables and produce weather states 
that are physically plausible, evolve realistically 
in time and space, and produce distributions  
of conditions like those that are observed. 

The uncertainty in synthetic data produced  
using physics-based models is not uniform in 
time and space, between different weather  
regimes and geographies, or for different  
configurations of the same model.

synthetic weather data have much more inherent  
uncertainty than weather observations. This is intuitive  
to most users when simple models are used, but it is also 
true of data that are synthesized by complex numerical 
weather prediction (NWP) methods, including reanalysis 
and reforecast datasets (discussed in detail shortly), which 
are widely used. While these methods use observations 
as inputs and produce detailed outputs with realistic 
weather patterns that reflect the input observations, the 
uncertainty of model output data is not similar to that  
of direct meteorological observations. In addition, the 
uncertainty in synthetic data produced using physics-
based models is not uniform in time and space, between 
different weather regimes and geographies, or for differ-
ent configurations of the same model. At the time of 
writing, this is not fully understood even by many savvy 
power system modelers, and it is almost never acknowl-
edged in reports communicating the analysis of power 
system modeling that utilizes these inputs.

Furthermore, it must be remembered that few synthetic 
model data have been robustly validated against observa-
tions, in large part because in many cases such validation is 
not possible because the modeling was performed specifi-
cally to fill gaps where observations were unavailable.  
It is not correct to assume that if model output is similar 
to an available observation in one part of the model  
domain, that output in other parts of the domain will 
also be accurate. 
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This is not to say that synthetic weather data are not  
useful. When model configurations are thoughtfully  
designed to produce output for use in subsequent power 
system modeling, it is possible to produce valuable data. 
However, it must be understood that these data have 
much more inherent uncertainty than those coming from 
weather observations. As a result, regardless of the source 
of synthetic weather data, validation and uncertainty 
quantification are essential steps to ensure that invalid 
conclusions are not drawn from studies that utilize  
synthetic weather inputs.

The following discussion gives a basic description of  
the different sources of weather data for power system 
modeling. It is designed to help non-meteorologists 
make the best use of the guidance given in the rest of 
this report and be able to intelligently use weather inputs 
in power system modeling. This discussion covers different 
types of weather observations, ways in which weather 
data can be synthesized using models, and the pros and 
cons of different approaches. It describes how model  
implementation and configuration can impact the  
output data, explains why this might matter for different 
applications, and discusses the importance of validating 
model data. More detailed information on these   
subjects can be found in Appendix B.

Weather Observations

Weather observations are usually the most precise way  
to quantify atmospheric conditions and should be used 
wherever practical; however, observations at the necessary 
locations or across the required time period often are not 
available for assessing weather impacts on the electricity 
system. Therefore, observations are usually used to  
validate and determine the uncertainty of model data 
and/or to bias-correct the data by identifying systematic 
relationships between model output and truth.

Weather observations are recorded by instruments  
that measure quantities such as temperature, pressure, 
humidity, wind, precipitation type; cloud type, level,  
and coverage; and visibility. For in situ observations,  
the measurement device is physically located where the 
observation is taken, and for remotely sensed observations, 
the instrument is physically removed from the locations 
being observed, such as on orbiting satellites.

In situ measurements are appealing, as their uncertainty 
and quality is usually easy to quantify and the instruments 
are cheap relative to remote-sensing devices; however, 
their spatial coverage is limited and tends to be clustered 
around population centers. Examples of in situ instru-
ments include thermometers, anemometers, precipitation 
gauges, and barometers. In situ temperature measure-
ments, typically taken at airports, have historically  
been the primary dataset used to assess the impact of 
temperature on electricity demand. Such records typically 
span several decades, and sometimes more than a century. 
In situ measurements are also taken at wind and solar 
facilities, but these records are much shorter, and the data 
typically are not available for input into power system 
modeling applications (see Box 2, p. 18).

Regardless of the source of synthetic weather 
data, validation and uncertainty quantification 
are essential steps to ensure that invalid  
conclusions are not drawn from studies that 
utilize synthetic weather inputs.



WEATHER DATASET NEEDS FOR PLANNING & ANALYZING MODERN POWER SYSTEMS    ENERGY SYSTEMS INTEGRATION GROUP  18    

B OX 2 

Observations Made at Existing Renewable  
Resource Facilities

Most existing renewable resource facilities in the U.S. are 
equipped with instruments to collect meteorological data, and 
observation archives for these facilities would be very valuable 
for validating and bias-correcting model data. These facilities’ 
data collection is done in part because the Federal Energy  
Regulatory Commission (FERC) Order 764 requires that trans-
mission operators be provided with temperature, wind speed 
and direction, and atmospheric pressure from each wind  
generation facility on their systems and be provided with  
temperature, atmospheric pressure, and irradiance from each 
solar generation facility, to aid in power generation predictions 
used in system operations. Many other countries have similar 
requirements. However, these data are usually not made public 
and so cannot be used for power system modeling studies. One 
result of this is the paradoxical situation where reconstruction 
of past generation estimates for planning is less exact than 
forecasting of future generation for operations.

The only current way to produce the required 
data is to use models. However, broad access   
to weather archives for existing weather-driven 
power plants is necessary to validate and  
bias-correct model data.

For analyses of electricity systems for planning studies, multi-
decadal records are needed covering all possible current and 
future generation sites. Because most renewable generation 
facilities have been operational for under a decade, even if  
they were available, observational records are not long enough 
to be able to fully capture the distribution of weather-driven 
generation outcomes. In addition, data at operational plants are 
not always a good proxy for generation at future plants more 
than a few miles away. Thus, the only current way to produce 
the required data is to use models. However, broad access   
to weather archives for existing weather-driven power plants  
is necessary to validate and bias-correct model data. Further, 
access to power and availability archives would allow much  
better generation estimates to be produced from model- 
synthesized weather data. For these reasons, the project  
team strongly recommends policy changes to improve overall 
access to observation archives for existing weather-driven  
power plants.

Remotely sensed data are a crucial input to 
models that are commonly used to produce  
datasets for power system analysis today and 
going forward. Remote-sensing instruments 
either observe atmospheric data from some-
where distant from the measurement location 
(known as passive sensing) or send out a signal 
and observe the interaction of the signal with 
the atmosphere (known as active sensing).  
Remote-sensing instruments can gather data 
from large areas or volumes either by having  
a wide field of view or by scanning. Examples 
are cameras (passive sensors) and weather  
radars (active sensors). Modern remote sensing 
has revolutionized NWP, which requires the 
best possible estimate of the state of the atmo-
sphere to forecast future states and/or synthesize 
a more detailed picture of the weather than is 
available from observations alone. More details 
about in situ and remote-sensing observations 
can be found in Appendix B.

While observations are typically the most  
reliable measure of atmospheric conditions, 
they have major drawbacks.

• Observations are typically spatially sparse 
and often located in places that are not rep-
resentative of the important meteorological 
properties driving supply and demand  
across a region. For example, many surface 
observing stations are located at airports,  
and those in populated areas tend to be the 
best maintained. This means the temperature  
data may be useful for developing relation-
ships with load, but wind and solar data  
are unlikely to be representative of remote 
regional wind and solar plants.

• The instruments used by different observing 
networks are of vastly different quality and 
are maintained to different standards; quality 
control can be very tedious. One should not 
assume that one temperature, wind, or other 
measurement is as accurate as the next.

• Remotely sensed data are often voluminous 
and complex. They may require expert pro-
cessing and interpretation, and measurements 
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are often not uniformly organized in time and space. 
The sensing devices are typically expensive.

• Data discontinuities and biases can result from instru-
ment updates, updated instrument calibrations, station 
relocation, and even environmental changes around 
the observation (e.g., new buildings or increased  
shading by trees).

Model Data

As noted above, the network of observations is insuf- 
ficient to provide a representative view of generation  
potential for current and future renewables, so the  
observations we have need to be augmented with model-
synthesized data. This section explores the limitations  
of simple models and of the sophisticated NWP   
and machine learning methods used to produce more 
comprehensive datasets. More detailed information 
about NWP can be found in Appendix B.

Modeling the Atmosphere’s Complex Behavior

Because of the complex nature of the atmosphere, simple 
statistical models using variable(s) observed at one site 
(for example, temperature) are rarely able to estimate 
other variables at the same site, let alone at other locations. 
Any suggestion that such modeling is possible should be 
viewed with deep skepticism in all but the simplest cases. 
However, while the atmosphere is complex, its evolution 
in time and space does follow well-defined physical laws 
related to conservation of energy, momentum, and mass, 
and these laws can be described with mathematical  
equations. Solving these equations is the basis of   
physics-based modeling, which is widely used to produce 
synthesized weather data for a range of uses, including 
power system analysis.

In some cases, such as in the production of irradiance 
data for the National Solar Radiation Database (NSRDB), 
models are diagnostic and use observational data to infer 
(diagnose) an estimate for the value of a related quantity. 
An everyday example of a diagnostic model is seen in a 
mercury thermometer. The thermometer measures the 
expansion of mercury, and the diagnostic model converts 
this to temperature. But most physics-based models used 
to synthesize atmospheric data are prognostic: if the state 

of the atmosphere is known at many locations, such 
models can estimate the state of the atmosphere at other 
locations and other times. This is the realm of NWP 
models, commonly known as weather models or weather 
forecast models. While predicting the future state of  
the atmosphere is the most familiar use of NWP to  
the public, NWP models can also be used together  
with observations to estimate a denser array of historical 
meteorological data than is available from observations 
alone. (See Box 1, p. 11, for the three definitions of “fore-
cast” used in this report.) NWP enables the production 
of datasets that are representative of the distribution of 
past weather conditions concurrently impacting wind, 
solar, and load and that capture the chronological  
evolution of these conditions in a realistic way. 

Data produced by NWP models adhere to the physical 
laws governing atmospheric motions and processes and 
are produced on convenient regular geographic grids, 
with even temporal spacing. The distribution of each 
variable in time and space and its relationship to every 
other variable is consistent with these laws, which is  
important for producing chronological time series data  
of variables that represent the evolution of plausible 
weather scenarios. This means the data meet many  
of the requirements for use in modern power system 
modeling where wind and solar generation is broadly 
dispersed. However, as discussed below, while NWP 
models can provide reasonable estimates, even they are 
far from perfect, and their output should not be viewed 
as a near-perfect representation of truth. Many factors 
associated with the input data and model configuration 
affect these models’ output model, which can deviate  
significantly from reality.

While NWP models can provide reasonable 
estimates, even they are far from perfect,  
and their output should not be viewed as a 
near-perfect representation of truth. Many 
factors associated with the input data and 
model configuration affect these models’  
output model, which can deviate significantly 
from reality.
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Simple Statistical Models

An estimate of the meteorological conditions at a  
particular location is often needed because there are gaps 
in an observing record or because the required variable  
is not measured. Simple statistical models are often   
employed to fill such gaps in the observed record by  
using correlations of the available observations at the  
site of interest and observations at a nearby location to 
predict the missing data. These models can be useful for 
minimal data filling or for extrapolating a record using 
data from a nearby site with a longer time series, but it  
is critical that their validity and uncertainty is evaluated 
carefully, because such models rarely capture the range of 
possible outcomes and can produce false and misleading 

data that will impact downstream analysis. One easy  
way to check the validity of simple statistical models is  
to withhold some of the data from the dataset used to 
establish the relationship and check how well the  
model predicts the withheld data.

An example of a simple statistical model is “measure, 
correlate, and predict” (MCP), which is frequently used 
in wind resource assessment. Here, a (usually linear)  
correlation is developed between observations at an air-
port or other nearby observing location that has a long, 
good-quality meteorological record, and observations 
measured at a prospective renewable resource site. The 
relationship is used to put the data from the resource  
assessment measurement campaign into the context of 
the longer climate record to allow production estimates 
to be corrected up or down. If a good correlation can be 
established between the two observations, this method 
can work reasonably well to normalize average annual, 
monthly, and (with a strong correlation) daily output of  
a short measurement campaign (for example, two years) 
to the longer-term average. MCP is often applied with  
a long-term reference of about a decade. Because the  
climatological norm is considered as requiring 30 years 

It is critical to carefully evaluate the validity 
and uncertainty of simple statistical models, 
because these rarely capture the range of  
possible outcomes and can produce false and 
misleading data that will impact downstream 
analysis.
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to capture, most, but not all, of the average monthly  
variability can be captured in this way. 

MCP-like methods are also sometimes used to synthesize 
load time series. Here, measurements from two sites are 
correlated, and a simple transfer function is developed 
that allows periods without observations to be estimated. 
Because load and temperature are typically strongly  
correlated, this application is typically useful if applied 
with careful validation.

Other models apply simple empirical rules, for example, 
the assumption that a constant wind shear in the lower 
atmosphere can be used to extrapolate the wind speed  
at one height using data at another height. Similar rules 
can estimate temperature using constant lapse rates (the 
change in temperature with height). Such empirical rules 
can be useful in some applications, but do not produce 
the required level of accuracy in others. Therefore, it is 
important for a data user to know when empirical rules 
have been applied and understand the nature and impact 
of the uncertainty introduced.

Another example of the use of statistical models is to 
predict the daily profile of wind and solar generation 
based on the temperature regime influencing load for 
days that occur around the same time of year; this use  
is problematic. For instance, the assertion may be that  
if a warm January day has a particular solar shape, solar 
generation on other warm January days for which no  
solar data exist will have the same daily profile. This 
seems intuitively compelling; however, the reality is 
much more complex. Cool summer days can be sunny, 
hot summer days can be cloudy, and, as anyone living  
in the U.S. Midwest knows very well, the coldest winter 
days are often blazingly sunny. When one includes  
additional coincident variables like wind speed, the  
situation quickly becomes complex, especially if corre-
lations are being attempted between the conditions  
of two or more variables at different sites.

Statistical and empirical models like MCP typically  
relate one or two predictors (e.g., input variables like 
wind and temperature at location A) to the output  
variable (e.g., wind at location B) in a way that the  
output variable being predicted varies in a simple linear 
fashion with the input variable (first order, as opposed  
to quadratic, cubic, or higher order). These models are 

rough empirical approximations not representative of  
all the physical laws at play. They can produce apparently 
reasonable distributions with average errors but lead to 
very large errors in any given hour. This is problematic  
if the large error correlates with a weather condition that 
causes electricity system stress. Another problem with 
statistical and empirical models is overfitting, where a 
complex relationship between multiple variables is found 
within a sample, but validation outside of the sample 
shows that the apparent prediction capability is not  
present.

Models that attempt to reproduce the wind  
and solar profiles for a given day based on  
predictors like temperature may appear to  
produce a reasonable long time series where 
the range of output variables looks as though it 
reflects reality quite well. But careful validation 
will usually reveal a poor match with reality,  
especially when one looks at coincident   
combinations of variables impacting load and 
wind and solar generation across a region.

Models that attempt to reproduce the wind and solar 
profiles for a given day based on predictors like temperature 
may appear to produce a reasonable long time series 
where the range of output variables looks as though it 
reflects reality quite well. But careful validation will usually 
reveal a poor match with reality, especially when one 
looks at coincident combinations of variables impacting 
load and wind and solar generation across a region. 

Numerical Weather Prediction Models

While NWP models are best known as the basis of 
modern-day weather forecasts, NWP methods are also: 
(1) the core component in datasets utilized as weather 
inputs for power system modeling, and (2) used for global 
climate modeling designed to understand the potential 
consequences of anthropogenic climate change. NWP 
models mathematically represent the physical laws  
governing the weather and can be used together with  
observations to estimate a denser array of historical  
meteorological data than is available from observations 
alone. (See Box 1, p. 11, for three definitions of “forecast.”) 
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4  A weather analysis is a process that takes available weather data and uses it together with knowledge of the laws of physics to estimate the state of the  
atmosphere and is the first step in the forecasting process. It can be done manually, but today it is typically done using computer codes. Reanalysis is the 
term used for a similar process that occurs after the fact when all of the possible data are available, including what would have been the future state of the 
atmosphere. Through the use of sophisticated computer codes, reanalysis reconciles all the data from observations and past, current, and future model  
estimates in an effort to produce the most accurate weather analysis possible.

5 NWP models track the state of the atmosphere at a finite number of grid points. The closer together these grid points are in the horizontal and vertical, the 
higher the resolution of the model. It takes at least three grid points to represent a simple feature on the Earth’s surface or in the atmosphere. An intuitive 
example of the representation of terrain is that a V-shaped valley requires three grid points to resolve, and a U-shaped valley requires four, so if the grid  
points are 1 km apart, the smallest valley that can be represented is 2 km wide. All features below this scale are not explicitly resolved.

However, there are many sources of uncertainty and  
approximation related to the data used as inputs to the 
NWP process and the specific model used.

NWP methods can be used to produce other types of 
datasets that are commonly used in power system planning, 
including reanalysis data4 (defined in the footnote and 
described in more detail below), as well as in the high-
resolution downscaling of both reanalysis data and global 
climate model (GCM) output. In what follows we intro-
duce the basic principles of NWP modeling, some of the 
model configuration choices that have the most influence on 
the applicability of NWP data to power system modeling 
tasks, and gridded weather analysis data, reanalysis data, 
and downscaling. Warner (2011) provides an excellent 
summary of best practices for NWP modeling. Other 
recent works that provide useful summaries of NWP 
modeling for renewable resource applications include 
Haupt et al. (2017, 2019) and Jiménez et al. (2019).

drawn from downstream power system modeling results 
because of imperfect weather inputs. Above all, one 
should always remember that garbage in will result in 
garbage out. Having enough knowledge to know when 
to question the quality of weather inputs is essential.

Basic NWP Principles

Atmospheric processes adhere to physical laws that can be 
described mathematically as a system of regular and partial 
differential equations. If we perfectly describe these laws 
mathematically and we perfectly know the state of the  
entire atmospheric system at a given time, then we can, in 
theory, determine the entire atmospheric state at all future 
times. This situation is known as an initial value problem. 
NWP is the branch of atmospheric science dedicated  
to determining the initial value as accurately as possible 
and solving the initial value problem for subsequent times  
by representing as closely as possible the physical laws 
governing the motions and processes that are occurring, 
using mathematical equations that can be solved using  
numerical methods. NWP models are physics-based  
models (sometimes referred to as physical models)  
that perform this modeling on computers. They require 
extensive and accurate data inputs (the initial value)  
and apply these inputs to the physics-based equations to 
model the atmosphere, including the development and 
decay of weather systems and their movement across a 
geographical area. NWP models can either be run over  
the entire globe or over a particular region of interest. 

By discretizing the three-dimensional model domain into 
grid cells (i.e., grid volumes),5 NWP models represent and 
predict values for numerous variables (including temperature, 
wind speed, and solar irradiance) at every grid cell in the 
domain, regardless of whether or not an observation exists 
for that grid cell. Because the modeling is physically based, 
where interpolation/extrapolation of observations leads to 
initial conditions that are not consistent with the physics 
of the system in some locations (typically due to a lack of 

Power system analyses where weather risk is 
high and important for decision-making should 
probably engage a meteorologist who is well 
versed in NWP to explore potential pitfalls  
and ensure that erroneous conclusions are  
not drawn from downstream power system 
modeling results because of imperfect   
weather inputs.

Power system modelers using NWP output must have  
a basic knowledge of things that impact the accuracy  
of the data they are using and the situations where larger 
errors might show up—the devil is in the details. Power 
system analyses where weather risk is high and important 
for decision-making should probably engage a meteo-
rologist who is well versed in NWP to explore potential 
pitfalls and ensure that erroneous conclusions are not 
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data), the model will tend to evolve the fields to remove 
the physical imbalance; this adjustment process will  
usually produce a more accurate representation of the  
atmosphere than was available by simple interpolation  
of available observations. This is a powerful feature of 
NWP that is particularly useful in regions of complex  
topography where fields may vary rapidly with distance 
and observations are sparse.

NWP models can be run at different grid spacing in  
both the horizontal and the vertical, which determines the 
granularity (or resolution) of the geography and attendant 
physical processes that the model can simulate. A high-
resolution grid is critical for power system studies so that 
the weather impacting existing and potential future wind, 
solar, and other plants can be accurately determined, along 
with concurrent weather impacting load. These weather 
data can then be used in power system models to evaluate 
how weather will affect the concurrent performance of 
these resources and loads on the power grid so that  
studies can identify potential points of weather-driven  
reliability risk.

It is reasonably intuitive that we cannot measure the  
state of the atmosphere perfectly even at one location  
(due to measurement uncertainty), let alone everywhere. 
In addition, we do not have the computer power necessary 
to represent every turbulent eddy or cloud droplet explicitly 
even if these details could be measured. Moreover,  
numerical methods are inherently approximations because  
they deal with finite differences versus the infinitesimal 
differences of pure calculus. Therefore, perfectly predicting 

weather variables at any given time or place is not possible. 
In addition to these limitations in our ability to model the 
atmosphere, the laws governing the atmosphere’s behavior 
involve non-linear interactions among many variables. 
Systems like this are highly sensitive to small changes 
in the initial conditions, and their behavior is inherently 
chaotic. Small perturbations in the initial state ultimately 
result in large differences in the future state. The metaphor 
that a butterfly flapping its wings in Africa can affect the 
development and path of a hurricane in North America  
is apt.6 

The amount of time a modeled system remains predictable 
depends on how accurately the initial state is measured, 
the dynamics in the system, and the length scales of inter-
est. Therefore, since measurements can never be performed 
everywhere or with perfect accuracy, and since those  
observations cannot be perfectly represented by analytical 
functions, even with infinite computer resources, there are 
fundamental limits to the accuracy of the predictions that 
NWP models can make. That is, while the data are useful, 
they are imperfect, and these imperfections must be  
quantified and considered when the data are used as an 
input to power system modeling. Predictability depends 
on the scale of the weather features of interest, on the  
order of minutes for small-scale phenomena a few meters 
across (such as dust devils), to a few weeks for the planetary 

6 The atmospheric system was where chaotic systems were first explored. Edward Lorenz showed in his famous 1972 talk, “Predictability: Does the Flap of a 
Butterfly’s Wings in Brazil Set off a Tornado in Texas?,” that for such a system, while the exact present determines the future, the approximate present does 
not approximately determine the future (Lorenz, 1972).

In addition to the limitations in our ability  
to model the atmosphere, the laws governing 
the atmosphere’s behavior involve non-linear 
interactions among many variables. Such  
systems are highly sensitive to small changes 
in the initial conditions, and their behavior  
is inherently chaotic. Small perturbations  
in the initial state result in large differences  
in the future state.
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7 Planetary waves (also known as Rossby waves) can be thought of as broad undulations in the jet stream, and they drive the large-scale weather patterns  
(periods of storminess and quiescence). There are typically four to eight waves (ridges and troughs) spanning the globe. They result from the rotation of the 
Earth and are modified by temperature gradients as well as interactions with surface features and other processes that move energy around.

waves7 encircling the Earth that are thousands of   
kilometers across and drive large-scale weather systems 
( Judt, 2018, 2020).

Figure 2 provides a simplified representation of how  
atmospheric data are represented in an NWP model  
and the process of iteratively running such a model. All 
NWP modeling starts with an initial condition that is a 
three-dimensional representation of the atmosphere. The 
initial condition is produced by taking a first guess of the 
atmospheric state (also known as the background field) 
from a prior model run (usually a short-range prediction 
of one, three, six, or twelve hours) and adjusting it using  
as many sources of observational weather data as possible, 
including surface observations, balloon soundings, radar 
data, ground- and space-based remote-sensed information, 
and aircraft data. This is a complex process that incorporates 

the observations into the model in a way that considers 
both model and observational uncertainty and produces 
an initial condition that is physically consistent with the 
model topography. For regional NWP models, lateral 
boundary conditions must also be specified at regular  
intervals (typically every one to six hours) for the entire 
duration of the simulation, from either a global model  
or a larger regional NWP model. These lateral boundary 
conditions are another source of model error; eventually 
this “boundary creep” can contaminate results throughout 
the domain. See Warner, Peterson, and Treadon (1997)  
for more in-depth treatment of lateral boundary   
conditions for NWP modeling. 

After weather observations are assimilated (data assimilation 
to be explained further below), the atmospheric state at 
the next time step is determined by numerically solving 

Illustration of the cyclical NWP process. Gridded weather data output from a prior NWP iteration becomes the background  
field (or first guess) to the next iteration. This first guess is then nudged toward observations, while keeping it consistent with  
differences between how the model configuration represents the physical world. The NWP calculations are then performed  
and the result post-processed according to the use case, while a short-range forecast feeds the next cycle.

Source: Justin Sharp.
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8 A common misconception is that the integration time step is the same as the output time interval. This is rarely true, although the integration time step  
represents the minimum output interval. The integration time step is a function of the model spatial resolution (with higher resolution requiring a short time 
step) and is usually a few seconds to a few minutes. The output interval just defines how frequently the atmospheric state is archived.

the governing equations at each grid point. This process 
is repeated until the user-configured model end time  
is reached. Gridded model output is written to a file at 
regular intervals.8 The prediction accuracy depends on 
the accuracy of the initial condition, how many time step 
iterations are performed, and how accurately the atmo-
spheric conditions can be represented in the model. The 
latter is a function of the model resolution (for example, 
a fair weather cumulus cloud that is 500 m across cannot 
be represented in a model with 10 km grid spacing) and 
of how well the physical processes can be represented 
and solved in computer codes, which itself is a function 
of the accuracy of the numerical methods used to solve 
the governing equations and whether those equations 
can even be represented at the scales being modeled.

The Impact of Model Resolution

Understanding the importance of model resolution  
is crucial, as small-scale features can have a strong  
impact on the weather that drives wind generation, solar 
generation, and load. Static features in the real world—
such as steep valleys or sharp transitions from forest to 
grassland or ocean—that occur at scales smaller than  
the grid spacing will not be accurately represented in  
the model. Consequently, the effects of these features  
will be represented inaccurately or not at all. Similarly, 
fine-scale weather phenomena like sharp warm or cold 
fronts or small thunderstorm cells will be different in 
model space than in reality. Differences between model 
data and reality are particularly important to consider  
in regions with complex (i.e., hilly or mountainous)  
topography. This is because the smaller-scale weather 

phenomena are a projection of the larger-scale weather 
pattern onto the topography and associated surface  
characteristics (like gaps, passes, slopes, and roughness). 
Therefore, where model topography is considerably  
different from actual topography, even if the large-scale 
weather pattern is correctly modeled, the projection of it 
onto the smaller scale will be consistently incorrect, and 
modeled values may be very different from those of reality. 

Horizontal resolution. Figure 3 (p. 26) provides a vivid  
example of the impact of model resolution on model  
topography. This poorly represented terrain in turn  
profoundly affects how local-scale weather features such 
as the flow through mountain gaps (known as gap flows), 
sea breezes, and mountain-valley circulation evolve in the 
NWP model in response to larger-scale weather systems. 
In the western U.S., these phenomena drive the power 
output of many gigawatts of wind energy facilities, and 
areas of clouds and clearing associated with mountain 
ridges could impact vast swaths of solar generation,  
especially in the future.

Where model topography is considerably  
different from actual topography, even if the 
large-scale weather pattern is correctly   
modeled, the projection of it onto the smaller 
scale will be consistently incorrect, and   
modeled values may be very different from 
those of reality.
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Topography represented in the four progressively finer-scale domains used for the University of  
Washington’s Department of Atmospheric Sciences’s operational NWP model. The four domains have  
a grid spacing of 36 km (top left), 12 km (top right), 4 km (bottom left), and 1.33 km (bottom right). 

Source: University of Washington. Available at the web page Pacific Northwest Mesoscale Model Weather Forecasts:  
Information (https://a.atmos.washington.edu/wrfrt/info.html).
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Figure 3 shows the model representation of topography 
in the Pacific Northwest at horizontal grid spacing  
of 36 km, 12 km, 4 km, and 1.33 km. This includes the 
Columbia Gorge, where the actual elevation is less than 
100 m at river level, with steep sidewalls rising rapidly to 
the crest of the Cascade Mountains at a height of over 

1000 m. Mount Hood (3429 m) and Mount Adams 
(3743 m) lie to the south and north of the gap. Several 
other large volcanoes are located in this region, as are 
several mountain ranges and a large inland basin. The  
key message here is that at low resolutions, many of the 
topographic features like tall mountains, steep canyons, 
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and river drainages are not properly represented; thus, 
the weather they drive in reality will diverge from the 
weather that develops in the model. For comparison,  
a configuration with a grid spacing of 1.33 km has  
784 grid points and 729 grid cells within the same  
geographic area as a single 36 km grid cell represented  
by four corner points.

At a grid spacing of 36 km (which is close to the  
resolution of the frequently used ERA5 reanalysis data-
set, discussed below), the gross features of the terrain are 
present, including smoothed versions of the mountains 
and rivers; however, tall volcanoes and mountain ranges 
are barely captured. At 12 km grid spacing, the largest 
peaks can be seen as only smooth areas of high terrain, 
and, similarly, low passes appear as smooth valleys.  
Details of the Columbia Gorge and the coastal range  
can be seen. At 4 km grid spacing, most of the major 

mountain gaps, tall mountains, and valleys in the main 
mountain ranges can be seen, and the important lowlands 
are represented as being near sea level as in reality. It is 
not until a 1.33 km grid spacing is used that the Columbia 
Gorge is resolved accurately. Resolving the Gorge is  
crucial to correctly predicting the wind generation from 
the large number of wind farms at its eastern terminus.

Figure 4 shows hypothetical cross-sections through  
terrain similar to that in Figure 3. Using 3 km, 9 km, and 
27 km grid spacing, it illustrates the profound differences 
in surface elevation and terrain features at different  
resolutions. The divergence between each model resolu-
tion and reality affects elevation-dependent values such 
as surface temperature and precipitation phase, but more 
importantly, model resolution affects how meteorological 
phenomena like cold pools, downslope winds, and 
upslope precipitation evolve in the model. 

A 3 km representation of 
this mountain range has five 
peaks and four valleys.

At 9 km, narrow peaks and 
valleys are lost and the crest 
is lower.  The complexity 
behind the crest is lost and 
becomes a wide valley.

At 27 km, the range becomes 
a simple peak with a smooth 
up and downslope on either 
side of the crest, and the 
crest shifts eastward.

The top plot shows a cross-section of hypothetical complex topography represented at 3 km grid  
spacing. The middle plot uses the average of sets of three 3 km points for each 9 km point. In the  
bottom plot, three 9 km points were averaged to get to each 27 km point. 

Source: Justin Sharp.

F I G U R E  4 
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9 Albedo is the diffuse reflectivity of a surface. Surfaces with an albedo of 1 reflect all the sunlight that hits them, while those with an albedo of 0 absorb it all. 
Emissivity is the effectiveness of a material for emitting thermal (visible light and infrared) radiation. Heat capacity is the amount of heat supplied to a unit 
mass of material to achieve a unit temperature rise.

10 An inversion is an atmospheric layer where temperature increases with height. Inversions often occur in winter in basins and valleys because surface cooling 
on the valley sides causes cold air to drain down the valley floor. Without significant daytime heating it is difficult to remove the cold layer, as the air above it  
is warmer and does not mix down into it.

Model resolution has similar impacts on land surface 
characteristics with the placement of urban, forest,  
farm, and desert areas all becoming progressively  
more accurate as resolution increases. Each type of  
land surface has different values defining properties like  
surface roughness, albedo, emissivity, and heat capacity, 
properties that have a profound influence on how the 
real and modeled atmosphere respond to the surface.9 
For example, surface roughness dramatically impacts  
the low-level wind speed, wind shear, and turbulence.  
Albedo, emissivity, and heat capacity change the rates  
of surface heating and cooling, affecting low-level  
temperature and therefore mixing of the low-level  
air, which in turn impacts the vertical distribution of 
near-surface wind speed, temperature, and humidity.

that will sometimes be present in reality.10 In other cases, 
for example, where a deep valley exists in reality but the 
model resolution is only sufficient to represent a shallow 
mountain pass, the model may produce the gap winds 
that occur in reality but their magnitude is very muted 
compared to reality. Both examples directly impact the 
accuracy of wind generation estimates. The errors in the 
way the weather evolves will also propagate downstream 
and grow as the simulation progresses, potentially  
impacting other regions.

Figure 5 (p. 29) provides an illustrative example, again 
from the Pacific Northwest, of the impact of resolution 
on the wind field. Just as a large boulder in a river creates  
a wake behind it where the flow is slower or may even 
reverse, Mount Hood creates a significant wake in the 
atmosphere, and in the right conditions this wake can 
persist for tens of kilometers and impact many wind 
plants downstream. The top of Figure 5 shows the wind 
field simulated with an NWP model running at 1 km 
grid spacing so that it has sufficient resolution to resolve 
both the wake and the atmospheric waves (manifested in 
the figure as periodic lines of stronger wind) created by 
narrow ridges. Areas of stronger winds are also seen  
behind some slopes and associated with width changes  

While it is typically understood that lower- 
resolution models will not properly predict the 
details of air flow in complex topography, it is 
often mistakenly believed that these models 
will predict the broad features of the flow  
and that this output can then be statistically 
corrected. However, if the model topography 
cannot properly support conditions that cause 
a phenomenon, the phenomenon may be  
absent altogether from model output.

While it is typically understood that lower-resolution 
models will not properly predict the details of air flow in 
complex topography, it is often mistakenly believed that 
these models will predict the broad features of the flow 
and that this output can then be statistically corrected. 
However, if the model topography cannot properly  
support conditions that cause a phenomenon, the  
phenomenon may be absent altogether from model  
output. For example, in Figure 4 there are no valleys 
whatsoever in the 27 km resolution cross-section; there-
fore, it is impossible for the model to create the valley 
inversion (and the calm conditions that come with it) 
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The output from a 1 km Weather Research and Forecasting 
(WRF) simulation (top) clearly shows mountain wake and wave 
activity to the east of Mount Hood, whereas the output from the 
30 km ERA5 dataset (bottom) for the same hour in April 2010 
does not show this activity.  

Sources: Iberdrola Renewables (top), and Sharply Focused with data from  
the European Center for Medium-Range Weather Forecasting (bottom).
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in the Columbia Gorge. These structures were first  
indicated in high-resolution NWP simulations like this 
one and confirmed to exist through analysis of turbine 
winds.11 Their presence was subsequently evaluated  
in detail in the Wind Forecast Improvement Project  
Part 2 (WFIP2) field campaign (Draxl et al., 2021). 

However, the bottom of Figure 5 shows the output  
resulting from a much lower grid spacing of about 30 km. 
The difference is dramatic, because simulations at this 
resolution cannot capture the detailed structures seen  
in the 1 km simulation. The topography that causes the 
phenomena does not exist at this resolution, and the grid 
spacing is insufficient to represent the rapidly varying 
wind field. The waves observed in reality and in 1 km 
simulations create significant mixing of the lower atmo-
sphere and impact the evolution of the airflow. Therefore, 
a lower-resolution model, in addition to being unable to 
resolve the features of the terrain, will not capture the 
impact these features have as the model proceeds, causing 
the model output to diverge significantly from reality.

Vertical resolution. Vertical resolution is also important. 
Vertical gradients of atmospheric properties like wind 
speed, temperature, and humidity tend to be largest near 
the surface, as this is where most of the sun’s energy is 
transferred to the atmosphere during the day and where 
most cooling occurs at night. The surface is also where 
most evaporation of water occurs and where topography 
and land surface characteristics have the largest impacts 
on weather. Therefore, higher vertical resolution is  
needed near the Earth’s surface, but, in the interest of 
model efficiency, lower vertical resolution can be used 
higher in the atmosphere. A hybrid coordinate system  
is therefore used in NWP models that follows the  
terrain near the surface and gradually migrates toward a 
non-terrain-following coordinate away from the surface,  
as illustrated in Figure 6 (p. 30). This allows the strong 
surface gradients to be resolved regardless of the elevation 
of the terrain while reducing the resolution needed  
farther above the surface.

Figures 7 and 8 (p. 31) provide a schematics of a three-
dimensional grid illustrating terrain-following coordinates 
in 3D and the high-level aspects of performing NWP 
(solving the forecast equations with the available com-
puter resources). Many details in the topography, surface 
properties (water, grass, woodland), and weather features 
(like clouds) cannot be resolved at the grid spacing used 
(where data only exist at the intersections of the grid 
lines), illustrating the importance of resolution. Figure 8 
also shows how the weather stations (white and red icons) 
do not coincide with the grid points. Subgrid-scale  

11 Observed by Justin Sharp and meteorologists at Iberdrola Renewables.
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F I G U R E  6

Illustration of a Hybrid Coordinate System Used in NWP Models
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Vertical gradients of atmospheric properties are largest near the surface, necessitating higher resolution there. However, the  
surface does not have constant elevation, and there is also no need to perform calculations below ground. Therefore, a hybrid  
coordinate system is used which follows the surface elevation at ground level and gradually relaxes with height above ground to a 
constant-pressure level coordinate away from terrain. The blue area is a cross-section profile of the terrain, and the bold black line 
references sigma = 1, which represents the model surface level. Each orange line above represents a sigma level at which properties of 
the atmosphere are calculated. The levels follow the terrain most closely near the ground regardless of pressure (a proxy for elevation 
above sea level) and in this example are closest together near the ground, which is how they are configured in actual NWP models.  

Source: Justin Sharp.

parameterization schemes are used for processes that  
cannot be explicitly modeled, introduced below.

The Impact of Parameterizations

Even as computer resources have allowed for a dramatic 
increase in the resolution at which NWP models can  
be run, there are still physical processes relevant to  
power system planning that cannot be modeled, as they 
occur at scales smaller than the grid scale of even the 
highest-resolution model configurations, are too poorly 
understood or too complex to model explicitly, or occur 
too rapidly. These processes that cannot be explicitly  
modeled must be parameterized.

Figure 9 (p. 32) shows physical processes and features 
that need to be parameterized by NWP. The average  
(or bulk) effects of these processes can be determined  
using reasonable statistical relationships that are based on 
well-validated empirical observations or using sub-model 
processes that, while physics-based, determine the bulk 
average properties within the grid cell. For instance, the 
physics defining how raindrops form and fall to earth  
is well understood and can be modeled explicitly, but 
modeling the condensation, growth, and coalescence  
of every cloud droplet and raindrop is impractical for 
NWP purposes. Instead, a parameterization—also 
known as a scheme—is used which is essentially a  
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Illustrations of How Features are Discretized in an NWP Model Domain

Incoming
Solar Radiation

Surface Radiation

3-D Grid Box

Ocean

Land

Mountains

Figure 7 shows how some or all of the planetary domain is broken down into grid cells in an NWP model, while Figure 8 zooms  
into a small sub-domain. This shows how model grid cells follow the terrain near the surface, how a single grid cell does not  
perfectly represent everything within it, and how weather observations do not typically coincide with model grid points.

Sources: Figure 7: COMET® website at http://meted.ucar.edu/ of the University Corporation for Atmospheric Research, sponsored in part through cooperative 
agreement(s) with the National Oceanic and Atmospheric Administration. © 1997–2023 University Corporation for Atmospheric Research. All Rights Reserved; 
Figure 8: meteoblue (https://content.meteoblue.com/en/research-education/educational-resources/weather-model-theory/model-domain)

12 The parameter settings tune the Mellor-Yamada-Nakanishi-Niino (MYNN) planetary boundary-layer parameterization (Nakanishi and Niino, 2006) and MM5 
surface-layer parameterization (Jiménez et al., 2012). The surface layer and planetary boundary-layer (PBL) parameterizations are codes that handle the 
complex atmospheric physics associated with exchanges between the surface and the atmosphere, including things like exchange of heat and moisture with 
the surface and interactions between the free atmosphere and the layer impacted by the surface. 

sub-model that simulates a particular meteorological 
process. In the case of the formation of cloud droplets,  
it is known as the cloud microphysics parameterization. 
The scheme provides a physically sound approximation 
of the bulk effect of the physical processes occurring  
in the formation of clouds and precipitation. 

Because parameterizations are approximations, there  
are often several different versions that perform the  
same task, and each version may contain adjustable  
coefficients, settings, or parameters that can be tuned  
to make the approximation more accurate in different 
circumstances. For example, different schemes, and  
different parameter settings within a scheme, might  
work better in different seasons of the year, in different 
regions, or at different model resolutions. Sometimes 

schemes performing some of the different tasks in Figure 
9 (p. 32) may be designed to work well together, while 
others should not be used concurrently. Others sacrifice 
accuracy in favor of lower computational overhead; this 
is common for operational forecasting applications where 
timeliness is vital. The choice of parameterizations and 
corresponding parameter settings within a scheme is 
usually based on informed experimentation and validation, 
and the consequences of the choices can be profound. It 
is important for data users to at least be aware that the 
choice of parameterizations can impact output biases.

Figure 10 (p. 33) shows the sensitivity of hub-height 
wind speeds to changes in parameter settings related  
to turbulence and surface roughness.12 The model  
configuration is identical in both cases, including the 

http://meted.ucar.edu/
https://content.meteoblue.com/en/research-education/educational-resources/weather-model-theory/model-domain
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A summary of the various parts of NWP modeling that are  
parameterized. 

Source: COMET® website at http://meted.ucar.edu/ of the University  
Corporation for Atmospheric Research, sponsored in part through cooperative 
agreement(s) with the National Oceanic and Atmospheric Administration.  
© 1997–2023 University Corporation for Atmospheric Research. All Rights 
Reserved.

F I G U R E  9 

Commonly Parameterized Components of NWP

1. Incoming Solar Radiation
2. Scattering by Aerosols  

and Molecules
3.  Absorption by the Atmosphere
4. Reflection/Absorption by Clouds
5. Emission of Longwave Radiation 

from Earth’s Surface
6. Condensation
7. Turbulence
8. Reflection/Absorption  

at Earth’s Surface
9. Snow

10. Soil Water/Snow Melt
11. Snow/Ice/Water Cover
12. Topography
13. Evaporation
14. Vegetation
15. Soil Properties
16. Rain (Cooling)
17. Surface Roughness
18. Sensible Heat Flux
19. Emission of Longwave  

Radiation from Clouds

choice of parameterization schemes. The only modifica-
tion is in the choice of settings for parameters related to 
turbulence and surface roughness. The upper plot shows 
line plots of wind speed for many different combinations, 
while the lower plot translates these wind speeds to  
estimates of wind generation. Note that the spread  
in wind speed solutions is significant, but is greatly  
amplified by the cubic relationship between wind speed 
and power output. If completely different schemes were 
used, versus just fine-tuning the parameters, the impacts 
could be even larger.

Data Assimilation

In the data assimilation component of the NWP  
modeling cycle (see Figure 2, p. 24), the model first-guess 
field—the best initial guess at the state of the atmosphere 
usually obtained from a prior short-range NWP forecast 
—is adjusted to produce an initial condition that is as 
close to reality as possible. This process uses observations 

that are collected throughout the atmosphere, including 
at the surface. As illustrated by the three weather stations 
shown in Figure 8 (p. 31), these observations typically  
are not collocated with the model grid points. The data 
assimilation process melds the observations with the first-
guess field in a way that nudges the first guess toward 
observational truth and takes care of spreading the  
influence of the observation to nearby grid points, while 
at the same time maintaining the mathematical balance 
of the model’s representation of the Earth’s surface and 
atmosphere, which has less detail than reality. This is  
one of the most difficult-to-grasp aspects of NWP.

In short, we want the model initial condition to represent 
real-world conditions seen in observations as closely as 
possible, but at the same time it is important for the new 
initial condition to be as close to mathematical balance 
as possible in model space, and not lose important details 
about the state of the atmosphere that prior model runs 
have inferred. Models contain a less detailed representation 
than reality of things like terrain slope, elevation, and 
surface attributes like roughness, albedo, and heat capacity. 
These differences between model space and real space  
are largest close to the surface, especially where the real 
surface details are complex. Observations are generally 
more accurate than the model first guess, but the first 
guess contains details that have developed in the prior 
NWP cycle as the dynamic fields (temperature, pressure, 
wind speed and direction, etc.) have adjusted to the  
static model fields (topography, slope, land surface  
characteristics, etc.) in order to balance the physical 
equations. These details are also most important near  
the surface and where surface details are complex. It may 
be the case that, for instance, a temperature observation 
in a valley might be more accurate than the model first 
guess; however, that observation should not carry much 
weight because it represents a phenomenon that is at a 
scale the model cannot represent.

Thus, data assimilation is about much more than creating 
a new initial condition by interpolating available observa-
tions onto a grid: the assimilation process seeks to strike 
a balance between pushing initial condition features that 
drive weather at scales the model can represent toward 
observed truth, while maintaining the details that have 
been inferred by the model in regions where observations 
are sparse. In addition, assimilation accounts for differences 
that are due to the different level of detail the model  

http://meted.ucar.edu/
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Traces of wind speed and wind power for many different iterations of a model run with everything held 
constant except parameters related to turbulence and surface roughness. The upper plot shows the 
range of wind speeds generated by numerous model runs. The lower plot translates these wind speed 
differences to estimates of wind generation. The wider spread seen in the lower plot shows the profound 
impact of parameter choice when the cubic relationship between wind speed and power output amplifies 
these differences.

Source: Yang et al. (2016).

F I G U R E  1 0 

The Different Outcomes When Using Different Parameter Settings  
with the Same Model Configuration

Rated Speed

Cut-In Speed

Rated Power (1.68 MW)

00:00                12:00                00:00                12:00                 00:00                12:00                00:00                12:00                 00:00

5/7/11                                          5/8/11                                           5/9/11                                         5/10/11                                          5/11/11

resolution can represent relative to reality. For example,  
if the model surface elevation is higher than the real   
elevation where an observation was taken, the temperature 
expected in the model will be different from that observed 
in reality. If these differences between the model first 
guess and observations are naïvely pushed toward the 
observations, then the model initial condition may be 
moved far from physical balance (in model space), and, 
just like the real Earth system, a physics-based model 
will respond to remove imbalance when model integration 
starts. If the imbalances are large, then phenomena that 
are physically unrealistic (like strong winds that would 
not occur in reality) will develop and the model may 
even become unstable and cause the simulation to fail 
(i.e., crash).

NWP Principles Takeaways

Power system planners often need data of a higher  
spatial resolution than are available from observations 
and need these data to be representative of the real con-
ditions that are occurring in time and space, including 
how different weather variables coincide. NWP provides 
a way to synthesize such data. Because many of the  
meteorological features driving weather variables that 
impact supply and demand, especially those determining 
renewable resource generation, are driven by topography 
or small-scale weather features, the NWP modeling 
must either be conducted at sufficiently high resolution 
or use a post-processing method (described later in  
this section). 



WEATHER DATASET NEEDS FOR PLANNING & ANALYZING MODERN POWER SYSTEMS    ENERGY SYSTEMS INTEGRATION GROUP  34    

Running at higher resolution is usually the more accurate 
approach. However, it is not a panacea. First, even if  
vertical resolution is held constant, the computational 
resources needed to increase horizontal resolution scale 
by at least the third power because the number of required 
time steps increases by the same factor as the resolution 
change to keep the model computationally stable. Hence, 

impact the model accuracy. Further, some work better  
in some locations, seasons, and/or weather regimes  
than others.

Some grasp of these factors is necessary when utilizing 
data produced by NWP processes to ensure that the data 
are applied appropriately versus being considered as a 
simple proxy for observations.

NWP Applications Relevant to Synthesizing   
Power System Weather Inputs

It is widely recognized that the basis for modern day 
weather forecasting is the regular collection and assimila-
tion of data into NWP models and then running those 
models to produce a forecast of the weather expected in 
the coming days, and this use case is deployed to produce 
source data for operational load and generation forecast-
ing. NWP models can also be used to produce estimates 
of weather conditions for many power system analysis 
tasks. This section describes the key applications of NWP 
modeling that are relevant to power system applications.

Producing Operational Forecast Data

NWP models are the foundation of all operational 
weather forecasting products including forecasts produced 
for the power sector. While the operational application  
is not the main focus of this report, a short description is 
given so that the process can be compared to how NWP 
is used to produce other datasets that are this report’s 
central concern. Additionally, there are some instances  
in which archived operational NWP has been utilized 
for power systems analysis, and a few words need to  
be said about this.

When producing NWP output for operational forecasts 
of future weather, the first few forecast hours need to  
be produced as fast as possible, as they are only valuable 
if they represent a forecast of the future; if they are not 
produced quickly, they become an estimate of conditions 
in the past. This means making compromises regarding 
when to cut off ingestion for the data assimilation cycle 
so that a good enough initial condition can be produced, 
and the process of integrating the NWP model to produce 
estimates of future atmospheric conditions can begin. 
Choices also need to be made about model resolution 
and parameterizations that prioritize model speed as  

While the structures in high-resolution models 
can look very compelling, they are difficult  
to validate due to the small number of   
observations that are available relative   
to the number of grid points.

a 1 km simulation takes at least 27 times the resources of 
a 3 km simulation, and takes 27,000 times the resources 
of a 30 km simulation. The volume of output data also 
expands by the power of two, as does time to output 
them. And while the structures in high-resolution  
models can look very compelling, they are difficult to 
validate due to the small number of observations that  
are available relative to the number of grid points.  
This is especially true in complex terrain, where the  
meteorological fields are most in need of validation but 
observations tend to be sparse. Ultimately, a compromise 
must be made between the benefits of higher resolution 
and the computational and data storage resources that 
are available.

In addition, regardless of resolution used, NWP models 
depend on an accurate initial condition. How good this 
starting point is depends on past model runs and on  
the amount and quality of available observations. Data 
assimilation takes a representation of the atmosphere 
produced by a prior model run and applies observations 
to it to produce the initial condition. This process is very 
complicated and is a source of significant uncertainty 
that varies in time and space.

Even when using high-resolution configurations, some 
processes that need to be modeled still occur at scales 
finer than the model grid scale. These are represented by 
subgrid-scale parameterizations. Many different choices 
of parameterizations and associated settings exist, and 
their choice in the model configuration can greatly  
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well as accuracy. Lastly, choices of output variables  
and output frequency need to be made that provide the 
best overall value for all end users, not just those in the 
power sector.

Operational forecast models are regularly updated  
to incorporate the latest enhancements in NWP   
techniques and increasing computer power. Thus, the 
model configuration is not static in time, meaning that   
output resolution, skill, and biases are not constant.

Factors like early data cut-off, configurations set up for 
speed, and dissemination designed to be for all generic 
users mean that NWP data produced for operational 
weather forecasting by national forecast centers (e.g.,  
the National Oceanic and Atmospheric Administration’s 
National Centers for Environmental Prediction (NOAA/ 
NCEP) in the U.S.) is not ideal for use in power  system 
modeling. For power system uses we would like weather 
inputs to be the best possible representation of the  
state of the atmosphere, with variables and output level 
selected to match sector needs and model configuration 
being held constant to prevent unexpected changes in 
model biases.

Producing Reanalysis Data 

One of the most widely used types of atmospheric data, 
including for power system analysis, is reanalysis data. 
Reanalysis datasets have many strengths. However, they 
are often misunderstood as being able to serve as a proxy 
for observations, and thus are often misused. 

Reanalysis datasets are produced by NWP modeling  
systems configured specifically to produce as accurate a 
representation of the atmosphere as possible for a given 
model resolution and the available input data across long 
periods. Unlike using NWP to produce a prediction of 
the future, reanalysis seeks to produce a spatially and 
temporally complete representation of conditions in the 
past by incorporating all useful observations and using 
the model physics to approximate atmospheric states 

Reanalysis datasets have many strengths. 
However, they are often misunderstood   
as being able to serve as a proxy for   
observations, and thus are often misused.
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where and when no observations are available. Reanalysis 
data provide an easy-to-use, four-dimensional represen-
tation of the state of the atmosphere, often across the  
entire globe, using a single consistent method. The data 
are provided on regularly spaced grids, across long time 
periods (years, and often decades) at moderately high 
horizontal grid spacing (typically tens of kilometers, 
sometimes better) and moderately high temporal  
resolution (usually one- to three-hour intervals). More-
over, all the variables output at all locations are time- 
coincident and physically consistent: the same physical 
phenomena simultaneously impact every variable, and 
the cross-correlations between the variables are captured 
in the model. Another feature of reanalysis datasets  
is that, unlike for operational forecasts, the same   
configuration of the model is used to produce the entire 
archive, which means modeling system skill is static. All 
of these features are important for power system work.

However, reanalysis datasets are often misused by end 
users. Many believe that reanalysis data can be used as a 
proxy for actual observations and that they have a similar 
accuracy level. But it is crucial to understand that reanal-
ysis data are an estimate of the state of the atmosphere 
across an area, not a finite point. Reanalysis data are  
not observations. The quality of the estimate depends on 
several factors including the quality of the model used  
to produce the reanalysis, the configuration of parameters 
within the models, the horizontal and vertical resolution 
used in the modeling, and the quality, quantity, and  
distribution of observations assimilated into the model. 
In addition, the representativeness of the reanalysis  
output can differ under different atmospheric conditions 
and in different regions. As was described in the previous 
section, when weather conditions are heavily influenced 
by phenomena at scales smaller than an NWP model 
configuration can resolve (phenomena too small for  
the model to “see”), the results can deviate substantially 
from the reality of the finite point where observations  
are measured. While the variables are all physically  
consistent according to the mathematical relationships 
governing the atmospheric system, this consistency exists 

at the resolution of the model and is only as good as the 
background field and observations going into the  
reanalysis and the ability of the model to resolve the  
phenomena present at the resolution used.

To begin the reanalysis, the first background field used 
(the first guess of the atmospheric state) comes from  
archived output from a high-quality operational forecast 
model’s initial condition. For example, a reanalysis data-
set beginning in 1990 would utilize an initial condition 
from 00 UTC January 1, 1990. All available observational 
data are assimilated into this analysis. Reanalysis employs 
the most sophisticated assimilation methods available  
to produce the reanalysis field. This is usually a method 
called 4D-Var, which considers not just how observations 
vary in space, but how they vary in time and space relative 
to the model background field and relative to short-range 
model predictions forward and backward in time.13  
Observations from about six hours either side of analysis 
time are analyzed for this purpose. The output from  
this process is the first interval of the reanalysis. NWP 
integration then moves the reanalysis state forward to 
the next output time, for example, 01 UTC January 1, 
1990. The short-range forecast from this step then  
becomes the first guess for the next assimilation cycle.14 
The data assimilation cycle is then repeated with appro-
priate observation archives, followed by integration to 
the next reanalysis time. The process repeats until the  
entire dataset has been created. This usually takes months 
or years and millions of CPU (central processing unit) 
hours utilizing a supercomputer.

Raw model output from the reanalysis process is   
archived, but the data provided to users are usually  
processed into datasets that provide a standard set of  
atmospheric variables on a regular grid that is typically 
mapped to a sphere on constant-pressure levels. The 
transformation process can lead to the loss of useful  
resolution in the vertical and interpolation artifacts  
in the horizontal grid, and expert users may want to use 
raw grids where available. See Appendix B for details.

13 An accessible introduction to 4D-Var, which is used in producing ERA-5 reanalysis data—probably the most utilized reanalysis datasets for renewable  
energy applications—can be found at: https://www.ecmwf.int/en/about/media-centre/news/2017/20-years-4d-var-better-forecasts-through-better-
use-observations. 

14 The short NWP integration creates fields like accumulated precipitation that are also archived.

https://www.ecmwf.int/en/about/media-centre/news/2017/20-years-4d-var-better-forecasts-through-better-use-observations
https://www.ecmwf.int/en/about/media-centre/news/2017/20-years-4d-var-better-forecasts-through-better-use-observations
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Deriving Downscaled Regional Datasets

NWP and GCM models only resolve atmospheric  
phenomena at a scale equal to about six to eight times 
the grid resolution (Skamarock, 2004). For instance, a  
30 km model will resolve weather features that have a 
length scale of 180 km or more, which is much broader 
than many regional-scale weather impacts. However, 
downscaling can be used to produce higher-resolution 
datasets from lower-resolution ones, although it must be 
used with care. Output produced by the low-resolution 
models can be used as input to higher-resolution NWP 
models in order to reproduce the atmospheric conditions 
present in phenomena occurring at smaller scales that  
are driven by larger-scale weather patterns. For example, 
a low-resolution GCM can produce the strong winds 
associated with a deep low-pressure system (a large-scale 
phenomenon), but it cannot translate these winds to  
the heavy precipitation that will result from these winds 
along a steep mountain range (a small-scale phenomenon), 
because the mountains cannot be properly represented  
in the GCM. Examples of other small-scale phenomena 
driven by the large scale include circulations like sea 
breezes, gap winds, mountain-valley circulations,  
thunderstorm cells, cloudiness on the windward side  
of hills and mountains, and clouds clearing on the  
leeward side. Some of these smaller-scale phenomena  
are known to affect wind energy generation, especially  
in regions of more complex terrain, and other small-scale 
phenomena impact solar generation. These phenomena 
typically occur at scales below those of most national  
operational NWP forecast models (although this is 
changing as computer power increases) and well below 
the scales resolved by best-in-class reanalyses like the 
European Center for Medium-Range Weather Fore-
casting’s (ECMWF’s) ERA5 and the U.S. National 
Aeronautics and Space Administration’s (NASA’s) 
MERRA-2 or any current GCMs. Downscaled NWP 
output is also produced for certain operational forecast-
ing needs, for instance, fire weather and air quality,  
which require very high-resolution modeling. 

Importantly, the process of downscaling can be applied 
to historical output, like reanalysis output for use in 
power system modeling, or to the output of GCMs.  
The best-in-class Wind Integration National Dataset 
(WIND) Toolkit dataset from the National Renewable 
Energy Laboratory (NREL) is produced this way.

When performing downscaling, the lower-resolution  
initial condition is first interpolated onto the higher- 
resolution model grid in a process that also adjusts  
the meteorological fields to account for the different  
elevations present in the higher-resolution domain.  
Once the NWP modeling begins, the effects on the  
initial field from the higher-resolution terrain will  
cause the meteorological fields to realign and include  
the impact of the finer-scale topography that causes such 
phenomena as channeling of the wind, forced lifting over 
terrain, damming of cold stable air behind narrow gaps, 
and differences in heating across slopes. This adjustment 
process is known as spin-up, and once the model is spun 
up, the output will represent the phenomena present  
at the finer scales. 

Because the area being downscaled is regional versus 
global, the weather entering and exiting the edges of  
the domain needs to be provided to the model as it runs 
forward in time. These boundary conditions from the 
larger-scale analysis or forecast feed the edges of the  
finer-scale domain with accurate data about the larger-
scale weather pattern. This keeps the fine-scale domain 
anchored to the larger scales that are well represented  
in the lower-resolution data, while at the same time  
allowing the model to fill in the smaller-scale effects  
in a physically consistent way. In some cases (where the 
larger-scale features are trusted), scale-selective nudging 
can also be used to ensure that the larger-scale features 
within the domain do not drift during the finer-scale 
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15 Ground truth is actual wind and solar realization measured with instrumentation, as opposed to data from a model that is estimating the quantity.

forecast run. This means the model can run for longer 
without needing to be reinitialized. This creates fewer 
seams in the model output and minimizes computation-
ally expensive spin-up time, the output from which is  
not useful (generally the first few hours).

An example of the power of downscaling to yield more 
accurate representations of the weather fields is modeling 
in complex topography, such as the western U.S., the  
Appalachian Mountains, or the European Alps. Better-
resolved mountain barriers will better block cold, stable 
air in the models, and better-resolved steeper mountain 
slopes can accelerate winds more in line with reality, 
which can be to speeds several times larger than seen in 
lower-resolution models. As with all NWP output, once 
the model is spun up, the resultant downscaled data  
are physically consistent between weather variables.  
For instance, a sharp mountain barrier will be much taller  
at high resolution and thus reduce the air flow at lower 
levels (an impact on wind speed) across a barrier,  
compared to air flow modeled by a lower-resolution 
model. This in turn can change the temperature on  
the downstream side of the mountain because the  
air is coming from a different elevation with different 
atmospheric stability. At the same time, a gap or pass  
in the mountain barrier shown in downscaled data will 
be better defined and lower in elevation, also reflecting 
reality more closely. This will create stronger winds in its 
lee, and the air immediately downstream of the gap will 
be colder than in the original low-resolution output;  
it may also be drier and remove fog present in nearby  
locations not impacted by the gap. These more accurate 
representations of the weather fields will result in more 
accurate estimates of the wind and solar resources in  
the region, as well as temperature at load centers and 
weather-related outages at traditional generators. The 
more accurate representations also greatly improve  
estimates of precipitation that occurs in steep terrain  
that may feed a hydro system.

NWP downscaling is a powerful tool for providing  
consistent information about local effects and developing 
long time series at a level of detail not possible with 
available observations. However, it must be used with 
care for precisely this reason. The lack of observations 

means that only a small fraction of the NWP data points 
can be validated against ground truth,15 so it is especially 
important to make sure that the model output is validated 
where it can be to understand how well the model is  
performing. It is also important to remember that since 
model performance will vary with weather regime,  
validation should be more than just calculating   
average errors.

NWP downscaling is a powerful tool for  
providing consistent information about local 
effects and developing long time series at  
a level of detail not possible with available  
observations. However, it must be used with 
care for precisely this reason. The lack of  
observations means that only a small fraction 
of the NWP data points can be validated 
against ground truth.

Producing Global Climate Models

GCMs can produce datasets that represent weather  
conditions for decades into the future. Therefore, GCM 
output is potentially useful if one wants to simulate  
conditions affecting the electricity system in a future  
affected by climate change, although it must be under-
stood that there are considerable uncertainties in climate 
predictions, and expert climatologists should be engaged 
to understand how large the signal is relative to the 
model uncertainty. GCMs are, at their core, a type of 
NWP model, and like other forms of NWP output,  
the data from these models are dynamically consistent 
across output fields. While the core atmospheric model-
ing functions of GCMs are basically the same as those  
of other NWP models, GCMs have tighter coupling  
to modeling of other aspects of the Earth system such  
as the cryosphere, oceans, and atmospheric chemistry 
(including greenhouse gas concentrations), because  
over long time frames, feedbacks between these systems 
become increasingly important. GCMs also typically  
use much lower resolution to make long simulations 
computationally tractable, although, like regular NWP 
models, GCM resolution is constantly improving. Using 
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16 GCMs are not only used for studies of anthropogenic climate change and can provide insight into changes due to any manner of slow changes in the  
Earth system.

17 The energy output of the sun oscillates over time in a quasi-regular and predictable way, with an average cycle from the solar minimum through solar  
maximum and back to the minimum of approximately 11 years.

a GCM, it is possible to create accurate representations 
of the distribution of weather over longer periods.  
We know this because GCMs can accurately recreate 
historical distributions of, for example, temperature  
and rainfall across broad regions. The premise of climate 
modeling is that if statistical descriptors of the past  
climate can be simulated accurately, then simulations  
of the future will provide insight into how those   
distributions change as greenhouse gas concentrations 
change, and the climate warms.16 

It was noted above that the atmosphere is inherently 
chaotic and thus completely unpredictable at time scales 
beyond two to three weeks. Therefore, just like a standard 
NWP model, when a GCM is given a reasonable initial 
condition, it can accurately predict the evolution of the 
weather systems in this initial condition with some skill 
for a week or two, and, just like a standard NWP model, 
its prediction skill will fade beyond this horizon. How 
then is it possible to make predictions about Earth’s  
future climate with GCMs? This paradox is explained by 
the fact that chaos theory states that within the apparent 
randomness of a chaotic system there are underlying  
patterns, feedback loops, repetition, and self-organization. 
The objective when running a GCM is not to predict  
the weather at any given time in the future, but rather  
to predict the distribution of future weather events that 
can evolve at the scales the model simulates, for different 
Earth system conditions (like the amount of CO2 in  
the atmosphere). 

While GCMs can potentially simulate conditions  
affecting the electricity system in a future affected  
by climate change, this matter is considerably more  
complicated than it first appears, and there are several 
important caveats to understand before considering  
using GCM output for this purpose. These caveats,  
briefly laid out below, form the basis for why this report 
does not focus on power system weather inputs under 
climate change.

Because there is no observational method to validate  
the predictions of a GCM in the future, the standard 

validation process is to use GCMs to simulate conditions 
over the last century or so, using the changes that are 
known to have occurred in the atmosphere (like increasing 
CO2 and the oscillation of solar output through the 11-
year solar sunspot cycle)17 as a boundary condition. These 
simulations have been found to produce consistent and 
reasonably accurate results using many different GCMs 
(Hausfather, 2017). Once a GCM configuration is  
validated by showing it can produce a reasonable  
estimate of past climate, it is assumed that it can be  
used to model many future decades for different scenarios 
(such as changing CO2 concentrations or changes in  
atmospheric aerosols). The results from these simulations 
are compared between different GCM models, and 
where they are similar for the same changing boundary 
conditions (e.g., CO2 concentration), a higher degree  
of confidence is ascribed to the predicted distribution 
changes.

Almost all GCMs indicate significant future warming, 
and many produce patterns of temperature and precipita-
tion changes that are similar to one another. However, 
there is much more uncertainty around how wind and 
irradiance patterns might change. Further, GCMs do  
not run at sufficient resolution to be able to diagnose 
how large-scale changes even in fields like temperature 
and precipitation may translate to changes at smaller 
scales in regions of more complex topography, which  
are necessary to model for power system planning. One 
approach to examining these smaller-scale changes is  
to use the GCM output as input to higher-resolution 
NWP models in order to downscale it as described  
in the previous sub-section. When this is done, there  
is again some consistency in results for temperature  
and precipitation. However, the results of downscaling 
exercises are mostly inconclusive when examining  
phenomena like local wind circulations and cloud cover.

Post-Processing of NWP Data

NWP output and climate projections are not free of  
errors. Sources of error include the initial conditions  
used in NWP models and how they are constructed  
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(observations, assimilation), accompanied by boundary 
condition errors and model physics errors. For power  
system uses, even high-resolution model output can  
display significant deficiencies, resulting in systematic 
biases and less weather variability than expected. For  
example, even comparatively fine resolutions of NWP 
simulations provide an average temperature for each  
grid box of, say, 2 km x 2 km for local scale and 20 km  
x 20 km for a global scale, which can fail to reflect  
variability that has important impacts for both   
supply and demand in future power systems.

Post-processing can address some of the above deficien-
cies, by enhancing NWP or GCM output using simple 
methods such as determining and removing bias errors 
or performing more complex tasks for applications such 
as wind plant production estimates. The conversion from 
grid box to point estimates (point-based post-processing) 
or from coarse grid box to very fine grid box (grid-based 
post-processing) is called calibrated post-processing. 
Promising new machine learning methods offer an  
advanced form of grid-based post-processing, with  
the possibility of downscaling NWP output without  
the large computational expense of running very high-
resolution NWP simulations.

Statistical Post-Processing

A wide range of techniques are used for post-processing. 
Regardless of the method used, post-processing should 
produce an estimate as close as possible to the truth, 
while respecting the climatological probabilities and  
producing results that are physically consistent between 
the different meteorological parameters. Given enough 
training data (i.e., observations that can be compared 
with NWP output), these methods can improve both 
spatial and temporal representation of NWP estimates, 
but care should be exercised because the techniques tend 
to smooth the data and produce outputs that underrepre-
sent the upper and lower tails of variables like tempera-
ture, wind speed, and irradiance. In addition, the large 
amount of observational data needed to train them is  
often not available. Thus, while statistical post-processing 
can improve NWP output accuracy by some measures, it 
can also adversely impact important aspects of the original 
data distribution that could affect results when the data 
are used for tasks like resource adequacy analysis.

A simple post-processing example is bias correction in 
combination with a distribution correction, where one 
corrects the current estimate with the model’s bias and 
distribution of errors from past estimates. For ensembles,18 
other methods based on the idea of a weather generator 
can be used to search for past simulations that are very 
close to the current forecast and use the past correspond-
ing observation as new forecast, such as the analog  
ensemble (AnEn) approach (e.g., Delle Monache et al., 
2013; Alessandrini et al., 2015a, 2015b; Alessandrini and 
McCandless, 2020). Statistical methods are relatively 
easy to implement and apply, once the data are   
available and prepared.

Machine learning and other artificial intelligence  
methods can also be used to improve NWP output.  
The link between model and observations contains non-
linear relationships, which are difficult to capture with 
traditional statistical methods; however, using non- 
linear machine learning methods such as support vector 
machines, decision trees, and artificial neural networks, 
these relationships can be detected between observational 
data and NWP output. Once trained, machine learning 
methods can correct other NWP output. However,  

18 An ensemble in the context of NWP is a set of NWP simulations utilizing different NWP models or configurations and/or slightly different initial conditions. 
The resulting sets of output can be statistically analyzed and the dispersion between them utilized to assess simulation uncertainty.
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these methods can be challenging to design, need a lot  
of tuning and computing power, and require a significant 
amount of data to train on (ideally at least a year to  
capture all four seasons, and preferably multiple years  
to account for inter-annual variability).

Recent advances in machine learning are indicating that 
in the near future there is the possibility that some of 
these methods may not only be able to correct and/or 
downscale NWP output, but may, given enough existing 
NWP training data and observations, actually be able to 
produce better estimates by operating on low-resolution 
NWP output and observations than can be produced  
using high-resolution models. While detailing these  
developments is beyond the scope of this report, they  
are likely to become very important within the lifecycle 
of this document, and interested readers are referred  
to McGovern et al. (2019) and Lam et al. (2022) for 
more details.

Generative Machine Learning for  
Weather and Climate Data

Recent advances in machine learning techniques for 
computer vision and generative models have inspired a 
new class of methods for the post-hoc downscaling of 
NWP outputs. Generative models can learn and sample 
virtually any conditional joint probability distribution 
such that they can produce realistic multivariate spatio-
temporal fields given some conditional input. For example, 
a generative model can be trained to produce continuous 
gridded multivariate (e.g., wind, temperature, etc.) data-
sets that are physically realistic across both space and 
time given a lower dimensional input such as a set of 
point observations or a low-resolution climate model  
dataset. These methods promise to reduce the burden-
some computational requirements of high-resolution 
NWP simulations while maintaining high-quality data 
outputs. If these methodologies can be proven to work 
well, they will enable the production of higher-resolution 
and longer time series of weather input data suitable  
for power system modeling applications, as well as  
ensembles of these datasets that capture the uncertainty 
of the weather inputs and therefore allow electricity  
system studies to model sensitivity to this uncertainty.

Deep convolutional neural networks (CNNs) have been 
recently shown to excel at a wide range of computer  

vision tasks, including meteorological applications  
(Alzubaidi et al., 2021; McGovern et al., 2019). These 
networks are designed to the dimensionality and  
structure of image, video, and NWP simulation data. 
This results in powerful non-linear parametric models 
that can learn to emulate physical phenomena such  
as the momentum balance for wind flows on a spatio-
temporal grid, much in the same way that finite-difference 
or finite-volume methods execute physical equations from 
cell to cell in NWP models. Note that this comparison 
between trained convolutional operators and physics-
based finite-difference/finite-volume methods cannot  
be directly proven for large dimensional relationships 
such as multidimensional weather fields but can be  
demonstrated in simple 1D examples (Rackauckas et al., 
2021), which supports the utility of these trained models 
in physical domains. The result is a learned model that 
can emulate a physical simulation similar to an NWP 
but at a fraction of the computational cost. 



WEATHER DATASET NEEDS FOR PLANNING & ANALYZING MODERN POWER SYSTEMS    ENERGY SYSTEMS INTEGRATION GROUP  42    

In practice, a major problem is that a basic convolutional 
network can exhibit regression to the mean in the form 
of blurring or smoothing when producing forecasts  
or enhancing the resolution of data. This can result in  
an underestimation of extremes such as heavy rainfall 
intensities at small spatial scales (Ayzel, Scheffer, and 
Heistermann, 2020). One solution to this problem is  
adversarial training with generative adversarial networks 
(GANs) (Stengel et al., 2020; Hess et al., 2022; Wang  
et al., 2021; Rosencrans et al., 2023; Gagne et al., 2018), 
where a generative model must produce data that are  
not only accurate but also sufficiently realistic to fool  
a discriminative network. That is, the generative model 
produces outputs that are mathematically and statistically 
indistinguishable from NWP outputs from the perspec-
tive of a sophisticated classification model. For down-
scaling data with GANs (often called “super-resolving”), 
the generative network is trained to produce an enhance-
ment of the low-resolution input data that the discrimi-
nator believes is similar to real data, while simultaneously 
minimizing the numerical deviation from a corresponding 
true high-resolution dataset. This method has been shown 
to be effective in creating highly realistic enhancements 
for many types of data. 

GANs with deep convolutional networks have only  
recently been applied to the task of downscaling NWP 
data, but have already shown considerable promise with 
high-quality physics-based validation of the outputs 
(Stengel et al., 2020). To the knowledge of the authors, 
only a small handful of public datasets have been  
published at the time of this writing that leverage GANs 
to downscale historical reanalysis data or future climate 
data (Buster et al., 2023; Rosencrans et al., 2023; Hess  
et al., 2022). However, several additional wind datasets 
are known to be in development that leverage GANs to 
do a final spatio-temporal enhancement on coarse NWP 
data instead of running the NWP down to the final  
desired resolution. The benefit of this hybrid NWP+GAN 
approach is a significant reduction in computational 
costs compared to what would be required by a full high-
resolution NWP simulation (estimated at one to two  
orders of magnitude in compute time savings).

The main drawbacks of using GANs for downscaling  
are that this requires significant investment in machine 
learning expertise, machine learning–specific computing 
infrastructure, and high-quality training data, and  

can result in a loss of methodological interpretability  
including the possibility for data outputs that do not  
respect physical constraints. This last problem is clearly 
the most concerning, as low-quality data with poor  
physical constraints could compromise power system 
planners’ ability to accurately predict and plan for future 
system needs. The methods described above have the  
potential to greatly benefit the renewable energy and 
meteorological communities, but rigorous validation 
needs to be of the utmost priority. Statistical bench-
marking, validation against ground-truth observations, 
and careful examination of physical data characteristics 
like turbulence should all be regular practice when  
implementing these methods.

Crucial Takeaways for Power Systems 
Modelers Using NWP and GCM Data

In summary, NWP is a complex subject with many  
nuances. It requires expert knowledge to determine  
what model resolution, parameterizations, and parameter 
settings are best for the problem being solved and/or the 
best compromise between accuracy and computational 
burden. When performing long simulations across broad 
regions, configurations that work well in one region or 
season may perform poorly in others. Understanding the 
limitations and possible pitfalls of the models’ output  
requires deep knowledge of NWP systems. Some  
meteorologists without deep NWP backgrounds are  
not fully aware of these limitations and may recommend 
inappropriate usage of these models in power system 
planning. Even meteorologists with NWP backgrounds 
are sometimes unaware of how the data are being used 
and might recommend different approaches if they were. 
It is essential to have a feedback loop between power  
systems modelers and NWP experts when NWP data 

Even meteorologists with NWP backgrounds 
are sometimes unaware of how the data are 
being used and might recommend different  
approaches if they were. It is essential to  
have a feedback loop between power systems  
modelers and NWP experts when NWP data 
are being used for weather inputs into power 
system analysis.
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are being used for weather inputs into power system 
analysis.

Using data derived from NWP seems compelling  
because their regular format and general geographical 
and temporal completeness make them easy to use. But 
it is essential to understand that NWP data are not the 
same as observations—even data coming from reanalysis 
datasets that are often touted as suitable substitutions  
for observations. In addition, the performance of one 
NWP model or configuration is not a predictor of the 
performance of another model or even the same model 
used in a different region, with a different configuration, 
or with different input data. Even with well-chosen  
selections of resolution, parameterizations, and other 
configurable options, NWP models sometimes perform 
poorly. This poor performance does not occur randomly 
and is often related to specific atmospheric conditions 
and/or regions. When these factors align with weather 
situations that result in stress on the electricity system, 
the weather inputs going into power system models   
may be poor and compromise the results. Garbage in, 
garbage out. 

Therefore, it is crucial that for any study using   
NWP data as a proxy for observations, NWP data  
not be utilized as a black box dataset that is equivalent  
to quality-controlled observations. Users need to have  
at least a basic understanding of how the data were  
produced or engage with a meteorologist who has an 
NWP background—and ideally an understanding of 
how weather data are used in power systems models—
who can guide them in whether the data are appropriate 
for the application at hand. As part of this process, to  
ensure the appropriateness and accuracy of a modeled  
dataset for power system planning, users should review  

a comprehensive validation report for NWP data being 
used that has been performed within the context of  
the power system modeling use case. If a comprehensive 
validation report is not available, such a validation should 
be performed. NREL recommends such validation be 
performed before using the WIND Toolkit data.19  
Unfortunately, such validation is uncommon, and those 
validations that have been performed, such as for the 
overall NREL NSRDB and WIND Toolkit datasets, have 
looked mostly at bulk average statistics for a handful of 
sites and have not evaluated the dataset accuracy in the 
context of electricity system risk periods.20 It is important 
to note that these limited validations indicate significant 
differences between the NWP data and the ground 
truth; however, the results are not widely publicized.  
For example, a narrowly targeted simple evaluation of  
the WIND Toolkit data during a period of system stress 
in the western U.S. indicated substantial over-predictions  
of wind energy potential in the U.S. Pacific Northwest.21  
But such validations are not standard industry practice. 
This lack of validations is due in part to the limited  
data availability to perform thorough evaluations and in 
part to a lack of understanding of the need. The project 
team recommends the development of a best practices 
guide for validating weather inputs prior to use, and  
suggests that this be an integral part of any project  
that is developed to address the need for better   
weather input datasets.

19 https://www.osti.gov/biblio/1166659/.

20 For validations for the overall NSRDB, see https://doi.org/10.1016/j.rser.2018.03.003 and https://www.nrel.gov/docs/fy22osti/83015.pdf. For the WIND 
Toolkit, see https://www.nrel.gov/docs/fy15osti/61740.pdf and https://www.nrel.gov/docs/fy14osti/61714.pdf.

21 https://gridlab.org/wp-content/uploads/2022/05/GridLab_California-2030-Meteorological-Deep-Dive.pdf. 

It is crucial that for any study using NWP  
data as a proxy for observations, NWP data  
not be utilized as a black box dataset that is 
equivalent to quality-controlled observations. 

https://www.osti.gov/biblio/1166659/
https://doi.org/10.1016/j.rser.2018.03.003
https://www.nrel.gov/docs/fy22osti/83015.pdf
https://www.nrel.gov/docs/fy15osti/61740.pdf
https://www.nrel.gov/docs/fy14osti/61714.pdf
https://gridlab.org/wp-content/uploads/2022/05/GridLab_California-2030-Meteorological-Deep-Dive.pdf
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S ECT I O N  3

Weather Inputs Needed  
for System Planning

The preceding sections outlined the weather- 
energy nexus, provided a broad overview of the 
use of weather data in the electricity sector, and 

introduced the types of weather data that are available. 
This context highlights the trade-offs and pitfalls to  
consider when determining how to analyze weather  
impacts on increasingly weather-dependent power  
systems and what datasets to apply. The report now  
turns to the incorporation of meteorological impacts into 
system planning studies. Here, the project team describes 
in detail the different uses of weather data in these studies, 
how the data have typically been sourced and employed, 
how the data needs are changing in more weather- 
dependent systems, and the ramifications of this for  
the applicability of currently available data. 

In Section 4 that follows, “An Ideal Weather Inputs  
Database for Power System Planning, and Comparison 
to Currently Available Data,” the project team defines 
the characteristics of meteorological datasets that are 

needed for use as weather inputs for various power  
systems studies—the spatial and temporal resolution, the 
required variables, the time series length, and how data 
are produced, documented, managed, and made available 
—and gives specific guidance regarding the required and 
desired criteria for these attributes. We review and evaluate 
currently available data sources against these criteria  
to reveal important gaps, and, in Section 5, “Project  
Description for Producing Robust Weather Inputs Data,” 
we describe a clear way forward for robustly filling these 
gaps. Section 6, “Guidance for Using Existing Weather 
Inputs,” then looks at how weather inputs are currently 
used in power system modeling, discusses how existing 
datasets are applied and highlights their limitations, and 
offers examples of methods that may be able to mitigate 
the deficiencies to some degree. It summarizes do’s and 
don’ts for accounting for the uncertainties inherent in  
all weather datasets. (For definitions of terms that some 
readers may be unfamiliar with, please see the glossary  
at the end of the report.)
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B OX 3 

Power System Modeling Categories and Their Respective Data Needs

Weather data inputs are used extensively in power   
system planning, modeling, and operations. Although 
there are many different types of power system models, 
the most relevant for our purposes here are those used in 
the following three planning activities. At the heart of all 
planning, operational, and resource adequacy modeling  
is the requirement for the various simulations to proceed 
chronologically through one or more years. Planning 
models typically require hourly data, and operational 
models often use a five-minute time scale. Therefore,  
all renewable energy datasets need to faithfully preserve  
the chronology throughout the entire time period on  
either an hourly or five-minute time scale.

Renewable integration studies typically use models 
that simulate power system operations with various levels 
of renewable resources. As more renewable resources 
have been added to the power system and more regions 
in the U.S. have adopted ambitious renewable energy  
targets, these studies are evolving to incorporate very 
high levels of renewable resources and focus on how the 
power system could be operated—specifically to balance 
short-term fluctuations and uncertainty in wind and  
solar production—under these scenarios.

IRPs or similar planning studies are used in many state 
jurisdictions. The models used for this type of study can 
vary to some degree, but they most often include some 
type of planning/optimization model that can evaluate 
long-term costs and benefits of alternative resource mixes. 
These planning studies are sometimes augmented by 
more detailed operational models that require higher time 
resolution and more accurately simulate power system 
operations. Planning studies, and some operational   
modeling, often also include a resource adequacy   
assessment.

Planning models require a very large input dataset that 
can be used to choose the most effective combination 
and location of wind, solar, and other resources that  
are consistent with the planning objectives (optimized 
capacity expansion). Planning models used in renewable 
energy studies evaluate many alternative renewable  
resource build-out scenarios, performing what can   
be thought of as a “search” function to find the best   
combination of resources. This means that data for  
many renewable resources will be evaluated as candidate 
sites; hence, data for a very large number of renewable 
resource locations must be available for the planning 
models. The time resolution needed for renewable   
resource data for these models is hourly, and for as  
many years as possible (ideally three or more decades, 
though this is not always feasible), so as to guide the  
selection of the best long-term locations for renewable 
resource development.

Resource adequacy studies can be part of an IRP   
or carried out separately. Resource adequacy analysis 
typically requires hourly data and is an investigation of 
the ability of the power supply to reliably meet demand 
across a range of uncertainties. Resource availability,  
the probability of generators being out of service, and 
other factors are used to calculate one or more reliability 
metrics, which may include loss-of-load expectation,  
expected unserved energy, or heat maps that show  
times of expected supply risk. These studies are used  
to determine the total amount of resources that are 
needed to ensure reliability. The results of resource   
adequacy studies are being increasingly driven by the 
changing resource mix that includes more renewable  
resources and fewer traditional resources.

A Critical Need for Comprehensive  
Weather Datasets Targeted to Power  
System Modeling

Power system modeling applications are quite broad,  
as are various study objectives, falling generally into the 
categories of renewable integration studies, integrated 

resource plans (IRPs) or similar planning studies,  
and resource adequacy studies (see Box 3). All of these 
evaluate load, resource mix, and transmission scenario(s). 
While these scenarios typically represent future   
configurations, the data used, including the weather  
inputs, are usually based on conditions in the past for 
which measurements are available, either for direct use  
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or as inputs for data synthesis. This difficulty is associated 
with all aspects of the power system, not only renewable 
generation. Sometimes the historical data are modified 
to model changes expected in the future, for example,  
to account for load growth, or changes in weather as  
a result of climate change. 

There are many sources of uncertainty in power system 
modeling, especially when addressing future conditions. 
We do not have a good understanding of how load will 
evolve as transportation and heating electrify; where and 
in what quantity wind, solar, storage, and transmission 
will be built; or how much dispatchable generation  
will remain on the system and how flexible it will be.  
In addition, as already discussed, the increase in weather-
driven influences on the power system makes it important 
to capture the inter-annual variability of weather impacts 
on both demand and the availability of thermal and non-
thermal resources. But despite the uncertainty of future 
system conditions, we do have the capability to estimate, 
using capacity expansion models, the mix of wind, solar, 
transmission, dispatchable generation, and storage that 
meet reliability needs at least cost and to determine,  
using production cost models, how current and future 
generation mixes will perform under the full range  
of potential weather conditions. 

Since every portion of the system is becoming increas-
ingly interwoven—with weather conditions being the 
consistent linkage—the modeling efforts require quality 
weather data in order to obtain quality results. Modeling 
approaches that assume that the behavior of different 
system elements is independent will not properly describe 
the envelope of possible operating conditions, and long 
time series of concurrent weather data are needed. Data-
bases are needed that include the concurrent weather 

variables that will impact load, wind, solar, hydro,  
and thermal generation, in current and future system 
configurations. These need to be long enough to capture 
weather variability and infrequent severe weather events, 
of high enough resolution to get a reasonable assessment 
of generation at any current or future renewable generation 
facility, and physically consistent so that the estimates  
for all resource types are based on the same underlying 
weather conditions.

Databases need to be long enough to capture 
weather variability and infrequent severe 
weather events, of high enough resolution  
to get a reasonable assessment of generation 
at any current or future renewable generation 
facility, and physically consistent so that the 
estimates for all resource types are based  
on the same underlying weather conditions.

High-risk events do not have to be “extreme” in 
the classical sense to pose risks. As more wind 
and solar generation is added to the resource 
mix, combinations of moderate events, such as 
low winds and moderately cold temperatures, 
will strain the grid.  

Ability to Capture High-Stress  
Weather Periods

The power system is often most at risk during periods  
of high-stress weather, leading to increasing interest in 
obtaining a better appreciation and understanding of 
what constitutes high-risk weather from a grid reliability 
perspective, as well as the impact of such weather.  
Analyzing these risks requires knowledge of all the  
coincident weather impacts. It is important to note, how-
ever, that high-risk events do not have to be “extreme” in 
the classical sense to pose risks. As more wind and solar 
generation is added to the resource mix, combinations  
of moderate events, such as low winds and moderately 
cold temperatures, will strain the grid (Novacheck  
et al., 2021). 

There is also mounting evidence that the frequency  
and intensity of certain types of extreme weather have 
already increased (e.g., extreme heat, droughts, and heavy 
precipitation and environmental conditions they affect, 
such as wildfires and flooding). These are projected to 
continue to rise, and there is an expectation that climate 
change will affect all weather variables impacting the 
electricity system. As noted, the confluence of the above 
factors with climate change makes this a very difficult 
problem indeed, with very large inherent uncertainty; 
therefore, this report is focused on evaluating the changing 
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electricity system under the current climate. However, 
better planning and operational strategies are needed in 
anticipation of extreme events, hence the discussion in 
Section 7, “The Impact of a Changing Climate.”

Physically Consistent Weather Inputs

Overarching in all discussions of weather inputs for 
power system studies is that not only has the weather  
dependence of the electricity system increased, but this 
increase has led to much more interaction of weather  
impacts across different elements of the electricity  
system, bringing increased complexity. Because impacts 
are related, the data inputs used must be coincident  
and physically consistent. 

For example, the temperature at a load center is being 
driven by the same weather pattern driving wind and  
solar generation at the same time in other locations. This 
means that planning studies for such a system should  
not use approaches similar to those traditionally employed 
by power system modeling communities for evaluating 
hydro risk, where different hydro years are randomly 
drawn and then evaluated against loads for different 
weather years and random draws of generation outage. 
This approach assumes independence between hydro  
resource availability, hourly load, and other thermal  
generation outages, which, while not completely true, 
will not impact traditional study results in a profound 
way. But the interdependence of different weather- 
influenced variables means that using simple Monte 
Carlo methods to evaluate each variable independently  
is not valid in a system with significant shares of wind 
and solar generation.

Not capturing this dependence has a detrimental impact 
on the results because, while enough independent random 

draws will cover most possible combinations of wind 
generation, solar generation, and load, the sample will 
include many combinations that are not physically  
realistic and will not correctly represent the probabilities 
of different combinations that can occur. The interactive 
effects and resource diversity actually improve system  
reliability in some circumstances. For example, several 
consecutive days with well-below-normal temperature 
across a region do happen quite frequently, and this 
drives multi-day periods of high load. Periods of several 
days with little or no wind generation across a balancing 
area also occur quite frequently, as do multi-day periods 
of well-below-normal solar generation. If the probability 
of such days occurring concurrently across the same  
footprint was as high as the frequency their independent 
occurrence implies, an electricity system that is predomi-
nantly renewable resource–based would be impractical. 
The same is true for the independent combination of hot 
days with low-wind and low-solar days. However, the 
atmosphere follows physical rules, causing certain weather 
variables to correlate with others. For example, cold air  
in a location does not just happen. It is a result of atmo-
spheric processes like clear skies in a location (which are 
correlated with high solar generation) or the movement 
of cold air from one place to another (which is correlated 
with high wind generation). In a high-renewables energy 
system, these atmospheric rules define the distribution of 
the supply and demand balance in a region, including the 
tails of that distribution, which are crucial to understand 
when assessing system risk as levels of renewables rise. 

Data representing weather that impacts supply, demand, 
and generator outages that are used to analyze the  
electricity system should reflect these physical rules; we 
refer to such data as being physically consistent (Box 4,  
p. 48). Further, they must have chronological consistency,  

The atmosphere follows physical rules, causing certain weather variables to correlate with others. 
For example, cold air in a location does not just happen. It is a result of atmospheric processes like 
clear skies in a location (which is correlated with high solar generation) or the movement of cold 
air from one place to another (which is correlated with high wind generation). In a high-renewables 
energy system, these atmospheric rules define the distribution of the supply and demand balance 
in a region, including the tails of that distribution, which are crucial to understand when assessing 
system risk as levels of renewables rise.
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B OX 4 

The Importance of Physically Consistent 
Data for Different Weather Variables

This report urges the use of physically consistent 
data for different weather variables. Generally, this 
means that if the data are being synthesized, then   
a physics-based modeling method should be used, 
and the same instance of that model used to simul-
taneously produce all the variables. This ensures that 
they adhere to the physical laws and are all subject  
to the same inaccuracies from a single modeling  
process. However, the availability of synthetic weather 
data currently meeting these criteria is limited. The 
predominant datasets that are available that do meet 
these criteria come from reanalysis techniques or 
operational NWP models and have other drawbacks. 
For example, reanalysis data have a lower spatial  
resolution than is available from other datasets. 

This issue was discussed by the ESIG project team, 
and, ultimately, the group decided on a compromise, 
opting not to be overly prescriptive, and suggests 
that, until datasets meeting all requirements become 
available, in some instances it is reasonable to source 
weather variables from more than one model as long 
as the following apply: all of the models are physics-
based; the modeling uses similar spatial resolution; 
there is significant overlap in the source observations 
used in the modeling process; and the level of coher-
ence between the models is evaluated. An example  
of where a combination of two datasets is often used 
is the use of high-resolution wind data from the NREL 
WIND Toolkit and high-resolution solar data from the 
NSRDB, instead of using a lower-resolution single 
source like ERA5. The rationale here is that any  
physical inconsistency is less problematic than  
the issues resulting from lower spatial resolution. 
However, the impact of this compromise needs to be 
more thoroughly investigated than it has been to date.

evolving in space and time in a way that also obeys the 
same physical rules that connect the weather patterns at 
any point in time with the weather patterns before and 
after that time. Energy storage and demand response  
increase the importance of chronological consistency,  
as batteries must be charged prior to providing energy  
to the grid and demand response is only available for 
limited periods of time.

Observations are always the most reliable representation 
of weather inputs at a point, as they obviously obey  
atmospheric rules (to within measurement error) and  
do not have any modeling uncertainty. However, because 
weather-driven generation is widely distributed, and  
solar irradiance and wind speed and direction can change 
dramatically over small distances, much more geographi-
cally granular weather data are now needed than can  
be gathered with available observations. Data to fill the 
gaps must be synthesized by models able to reproduce  
as closely as possible the observed patterns of coincident 
variables that define wind and solar generation and that 
modulate load. These synthesized weather data can then 
be used to determine the hourly generation potential at 
all current and possible future wind and solar facilities, 
and to estimate demand, over a long enough period to 
account for the range of portfolio supply and demand 
possibilities.

If the weather inputs are synthesized by models,   
the differences between the real atmosphere and the  
estimates from the modeling process must be well  
quantified, for weather fields at a given instant as well  
as the distribution of overall outcomes. Additionally,  
it is usually not valid to combine temperature output 
from one modeling method with wind from another  
and irradiance from yet another, because this will yield 
physical inconsistencies between the variables. Similarly, 
even if three instantiations of the same model were used 
in the above example, and the resolution of two of them 
was different and the third used a longer simulation  
to produce the results, the resulting data will have some 
physical inconsistency. When the modeling methods 
used are fundamentally similar and operate on the same 
input data, these inconsistencies might be small enough 
to not impact downstream analysis, but this should be 
verified and not assumed. 

Model-synthesized meteorological datasets meeting 
these criteria do not currently exist. Some datasets  
exist that partially meet the requirements, but it is both  
possible and essential to create datasets with the required 
spatio-temporal scale and length that contain the  
coincident weather inputs driving wind, solar, hydro,  
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and load, as well as concurrent information pertinent to 
events that can cause weather-driven outages and derates 
of system components. All of the relevant interdepen-
dent weather variables need to be derived in a physically 
consistent manner for coincident points in time and 
space. This is not a simple task. However, the cost of  
creating such datasets is trivial relative to the peril  
of flying blind.

The remainder of this section examines the components 
of power system modeling that are impacted by weather 
inputs. Although these components are described  
separately, it should be kept in mind that in the evolving 
electricity system, the same weather is simultaneously 
impacting all of them. The subsequent section, “An Ideal 
Weather Inputs Database for Power System Planning, 
and Comparison to Currently Available Data,” describes 
the attributes of the meteorological datasets that are  
urgently needed, discusses currently available datasets 

and their limitations within this context, and proposes  
a path to bridging the gaps.

Load Data Synthesis and/or  
Normalization

Overall demand for electricity follows regular, predictable 
patterns that are a function of the time of day, day of 
week, and time of year. These patterns are associated with 
the rhythm of human activity, changes in daylight hours, 
and seasonal changes in weather. Day-to-day weather 
also modulates these fluctuations in a predictable  
way, because it impacts the amount of energy used to 
condition indoor spaces. Temperature is by far the most 
influential variable on the built environment’s consump-
tion, while humidity, solar irradiance, and wind have a 
secondary impact. However, the relatively simple linkage 
of temperature to load is changing dramatically due to 
the increased prevalence of behind-the-meter distributed 
energy resources (DERs), especially solar photovoltaic 
(PV) generation and storage. 

Another recent change is the addition of new loads due 
to electrification of transport and space heating, which 
also makes loads more sensitive to weather, though this  
is largely an amplification of the existing temperature 
dependence. The increasing use of demand response 
complicates the relationship between load and   
temperature. 

All of the relevant interdependent weather  
variables need to be derived in a physically 
consistent manner for coincident points in 
time and space. This is not a simple task.  
However, the cost of creating such datasets  
is trivial relative to the peril of flying blind.
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Here we consider the weather-driven components  
of load synthesis. The process of estimating future loads, 
especially beyond two or three years, from past usage  
by accounting for changes in usage from factors like  
electrification, energy efficiency, and demand response  
is a broader area of emerging research. The discussion 
also does not consider demand changes due to climate 
change. Rather, we describe how weather drivers are  
used to extrapolate short load time series records to  
longer periods by building relationships with long  
records of weather drivers. That is, given a starting point 
consisting of a load record (that may have already been 
modified to account for expected load growth) and  
coincident weather record, the following discussion looks 
at how to produce climatologically representative long-
term records of load using long enough weather records 
and how to weather-normalize existing load records  
to extract non-weather-driven trends.

Establishing a Temperature/Load Relationship

When conducting power system modeling, the need is to 
have a long load time series that represents the expected 
typical load of the period being analyzed while encapsu-
lating the impact of the range of weather conditions that 
have occurred historically. This can be done by establish-
ing a temperature/load relationship. For example, if we 
have an hourly load record in 2022 and we know the 
weather in 1991 through 2022, we can estimate what  
the load time series would have been in 2022 if every-
thing was held constant except for the weather, which 
instead was the same as it was in 1991, 1992 . . . or 2021. 
Similarly, we may adjust the 2022 load to estimate the 
load in 2024 in a way that accounts for non-weather-
related load changes (for example, from increased use  
of electric vehicles) and then estimate the load time  
series for the weather in other years. This is useful  
because, while load records from the past years may be 
available to utility planners, past electricity usage is not 
usually a good predictor of future demand over the long 
term. The overall average load, the load shape, and the 
peak load evolve over time due to changes in population, 
technology, and usage. In addition, available historical 
load records may not be long enough to cover the  
range of climatologically possible weather conditions. 
Fortunately, robust relationships—either known to  
be relatively stable or that can be adjusted to accommo-
date known load growth—can be developed between  

temperature records at major load centers and the  
coincident load for recent years. 

Once the temperature/load relationship has been  
established, it can be used in two ways:

• To normalize longer records of load to determine  
the trend in load without the impact of temperature 
variability from year to year. That is, a multi-year load 
record can be adjusted to some standard temperature 
year to determine how load is changing over time. 
These changes can then be applied to actual or  
synthetic loads to extrapolate them into the future.

• To build a long synthetic load record that represents 
how recent load conditions would vary across many 
weather years. This is done by using the load/temperature 
relationship and a long temperature record (from the 
same observing sites used to build the load/temperature 
relationship) to project recent load conditions onto  
a climatologically representative set of past weather 
years in order to better encapsulate possible load  
outcomes.

The above approaches allow a climatologically repre- 
sentative series of hourly load data and peak load to be  
developed for current and future systems for use in IRP 
or similar planning studies and resource adequacy stud-
ies, using surface temperature observations from weather 
stations within load centers. This is attractive because it is 
easy to understand, and high-quality surface data, usually 
from commercial airports, are nearly always available 
from several locations within major load centers. The 
sites are usually well documented, and the data are  
typically quality controlled, have low uncertainty,  
and contain few gaps.

Accounting for Behind-the-Meter  
Distributed Energy Resources

Rising levels of behind-the-meter (BTM) DERs— 
variable generation and storage—have made the process 
of representing weather impacts on load much more 
complex. The weather dependence of load is now a  
function of temperature driving demand and the weather 
variables driving BTM generation. Since most BTM 
generation is solar PV, solar irradiance is the primary 
variable, but temperature and wind speed also affect  
solar output. Further, snow or ice on the panels of BTM 
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generation may be a significant risk especially where 
rooftop solar is, or may become, a non-negligible winter-
time generation source, as the impact will be largest  
during periods when load is also high. Similar impacts 
can be experienced from smoke during wildfire season 
( Juliano et al., 2022). BTM storage greatly further  
complicates determining load since the timing of  
charging and discharging is an unknown variable.  
All of these factors degrade the relationship between 
temperature and load; therefore, the impact of BTM 
DERs on load must be removed before the methodolo-
gies discussed above can be used to synthesize gross  
load time series for multiple weather years. 

Fortunately, digital metering provides a way, in theory,  
to extract BTM generation from the net load to recover 
gross load, so this process is becoming easier. However, 
the BTM generation data that coincide with the syn-
thesized load day must then be reapplied to obtain the 
actual load net of BTM DERs. For historical periods 
prior to collection of BTM DER generation data, this 
will need to be estimated from weather data. And all 
BTM generation data will need to be scaled to the  
expected BTM DER capacity for the future period  
being studied. This means that quality data are needed 
for coincidental irradiance and, ideally, also wind and 
temperature, all at higher granularity than was needed 
for the simple relationship between load and temperature. 
As mentioned above, while the temperature throughout 
a load center is not uniform, it tends to follow consistent 
patterns so that a small number of temperature observa-
tions can explain most of the variance in gross load.  
But this is not true of irradiance, as regional cloudiness 
follows more complex patterns. The wind field contains 
even more small-scale impacts, but—unlike BTM solar 
—assuming no sudden technological breakthroughs  
in small-scale wind generators, BTM wind does not  
look likely to become a significant contributor to power 
generation. Further details around estimating wind and 
solar generation are discussed in more detail in the  
renewable energy sub-section below.

Accounting for Climate Change and the  
Urban Heat Island Effect

When determining the inputs needed to synthesize  
load, it is also important to consider the impact of climate 
change and the urban heat island effect of increasing  

urbanization. For the purpose of creating temperature-
to-load relationships over the last few years, these  
impacts are likely not particularly profound. However, if 
one wants to then use a temperature dataset going back 
30 or more years to examine the envelope of normalized 
load, the temperature from the earlier part of the record 
may not be representative of the current climate. If one is 
conducting a planning process for a decade or more into 
the future, the distribution of past temperatures may be 
even less representative. While these impacts are not the 
main subject of this report, these concerns, combined 
with the strong linkage of load to temperature, should 
not be ignored. There are several ways to deal with this, 
from simple trend analysis to the use of data from global 
climate models. These are described in Section 7, “The 
Impact of a Changing Climate.”

Weather Data for Developing Time Series 
Data of Wind and Solar Output

Since wind and solar generation are completely weather-
dependent, the rapid increase in their deployment has  
led to an urgent need for data that can be used to derive 
wind and solar generation. 

Essential Weather Variables

In addition to the obvious variables of hub-height wind 
speed (for wind generation) and irradiance (for solar 
generation), other weather variables also play a role— 
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and in many cases their role becomes larger during  
periods of weather-related system risk. For wind genera-
tors, changes in wind speed and direction across the rotor  
diameter affect output. Temperature affects air density 
and atmospheric turbulence, and turbines have an  
operating temperature range outside of which they  
are forced into outage to protect the equipment (e.g.,  
Al-Rasheedi et al., 2021; Al-Khayat et al., 2021). Humidity, 
temperature, and precipitation all impact blade icing 
conditions; light icing greatly reduces machine efficiency, 
and moderate build-up soon leads to outage conditions. 
Precipitation (or the lack of it) can change blade soiling 
conditions and lightning causes blade pitting, both of 
which affect machine efficiency. For solar generation, 
panel efficiency is significantly affected by back panel 
temperature, which is a function of the ambient air  
temperature and wind speed. Panel soiling reduces  
output and is a function of wind, surface type and  
dryness, and precipitation occurrence (e.g., Al-Rasheedi 
et al., 2020). Solar output can be curtailed by snow or  
ice on the panels and is vastly reduced by smoke and 
other heavy atmospheric aerosol loads, both of which  
are strongly influenced by weather patterns. 

The High Degree of Complexity in Developing 
a Historically Complete Time Series Estimate 
of Possible Generating Potential

To perform accurate studies on existing generation  
portfolios means estimating as accurately as possible  
a time series of the expected generating history of the 
variable resources across many weather years, just as was 
described above for load. These time series must be long 
enough to determine the range of possible wind or solar 
generation, and they must be concurrent with load and 
weather-driven outage and derating risks for other  
non-renewable generation and transmission.

In an ideal world, power system models would use actual 
generation from each facility, aggregating if necessary  
to the level needed by the analysis being performed. 
However, the current fleet of wind and solar generators 
has a limited operating history and lacks representative-
ness of the expected future build-out. Existing generators 
are clustered in regions where there is a union of high 
expected output and existing transmission; they do not 
reflect the number and geographical diversity that is  

expected in the future. Further, to perform capacity ex-
pansion analysis and/or analysis that includes future 
wind and solar build-out requires data that encompass all 
possible future locations of wind and solar generation as 
well. At many locations where wind and solar might be 
built in the future, there is no observational record at all. 

As a result, developing a historically complete time series 
estimate of possible generating potential is many orders 
of magnitude more difficult than synthesizing a load  
dataset that covers likely historical demand fluctuations 
due only to temperature. The story is further complicated 
for wind, because generation is proportional to the cube 
of wind speed, and wind distributions vary dramatically 
over short distances, at different hub heights, and for  
different rotor diameters—especially in complex terrain, 
which is where much of the best wind resource is located.

For this reason, the current representation of coincident 
wind and solar generation data used alongside load data 
in power system modeling is limited and relies on com-
binations of methods and data that are widely accepted 
as insufficient. The primary methods used are outlined in 
the next sub-section, along with data needed for each.

Where a limited study does allow the use of observational 
data, care must be exercised to ensure the proper under-
standing of whether the generation data include periods 
of curtailment due to operational constraints, and, if they 
do, an understanding of whether the curtailed energy is 
added back into the actual production and the method 
used to do this. 

The current representation of coincident wind 
and solar generation data used alongside load 
data in power system modeling is limited and 
relies on combinations of methods and data 
that are widely accepted as insufficient.

Modelers also need to be careful not to represent future 
wind plants with legacy wind turbine technologies. 
Wind turbine towers are getting taller, rotor diameters 
larger, and overall machine design more efficient, thus 
increasing energy yield relative to older technologies. In 
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22 Because of the variable shape of solar output through the day and year, and because inverter capacity is very expensive, solar facility inverters are often 
sized smaller than the installed capacity of solar panels because the energy lost during the relatively limited times that output exceeds the inverter sizing is 
worth less than the cost of a larger inverter. The resultant effect is called clipping.

some cases, a larger rotor may be used in slightly less 
windy areas, effectively lowering the cut-in wind speed 
and increasing the turbine capacity factor. Solar panels 
and tracking systems are also getting more efficient,  
and falling costs are pushing up inverter loading ratios 
(the number of panels installed per MWac of power)  
to increase capacity factors.

Extrapolation and Synthesis:  
Two Methods to Produce Datasets Long 
Enough to Capture Climatology

When the period of operational data is not long enough 
to meet a study’s needs, the options are to extrapolate  
to a longer record or produce a completely synthetic  
estimate of output. Both methods have advantages and 
disadvantages, but it is worth noting at the outset that 
while the use of empirical correlations to extrapolate 
longer generation time series for renewable resources  
is intuitively easy to grasp for non-meteorologists,  
it should be regarded with skepticism even if other  
options seem limited.

Extrapolation methods relate the observed generation  
to meteorological variables to create an empirical power 
curve in a similar fashion to creating the relationship  
between temperature and load. If done at the level of  
an individual wind or solar facility, this will implicitly 
account for loss factors like wind plant wakes, solar  
inverter losses and clipping,22 collector system losses,  
and substation losses. However, unless the data used  
to create the empirical power are carefully prepared,  
the function will also implicitly account for the average 
effects of other loss factors like output curtailment, 
equipment availability, icing, snow on panels, or high 
wind cut-out. These are factors that it would be best  
not to include in the extrapolation. In addition, site-level 
wind and solar data are difficult to procure and often 
poor in quality, especially the detailed data defining  
how overall generation is impacted by other operating 
conditions such as generator availability, and output  
curtailment due to transmission constraints or   
market conditions.
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Synthesizing generation estimates without reference to 
actual generation data uses power curves specific to the 
installed equipment (for example, model specification for 
the wind turbine, PV panel, and inverter). The advantage 
of this is that it is more generic and can be used for  
hypothetical future plants, but the disadvantage is  
that loss factors are not based on actual power plant  
configurations in the field.

Whether extrapolation or synthesis methods are used,  
it is worth noting that if aggregated estimates of output 
for an area are needed, the aggregation usually needs  
to be done by estimating the output at each facility  
and summing the results. This is because wind and solar 
resources can change over short times and distances in 
ways that do not follow simple relationships to “average” 
conditions. In addition, different sites employ different 
technologies that do not directly scale. However, as  
is discussed below, some current practices attempt to  
extrapolate production at a regional level. But at best, 
this produces a coarse relationship between regional  
meteorological conditions and renewable output and  
is generally not recommended as the amount and  
geographical diversity of renewable resources increases.

Estimating the Generation of Renewable  
Resources Using NWP or Other Physical  
Models

Renewable generation can be estimated using time  
series data of weather produced by numerical weather 
prediction (NWP) models and/or by processing data 
from satellite observations using other physics-based 
models. Both sources can provide high-resolution  
gridded data of some, or all, of the variables needed  
to estimate generation potential. From time series data  
of weather, it is possible to estimate the generation of  
any existing or hypothetical renewable resource site.  
The weather data from grid points near an existing or 
hypothetical renewable generation facility can be passed 
through power curves (usually based on equipment  
parameters and standardized loss factors, but they may 
be derived from actual plant data) to develop an estimate 
of expected generation, and can then be aggregated as 
needed for the power system analysis being performed. 

The methodology of using gridded data to produce  
generation estimates at current and expected renewable 

generation locations and then aggregating is appealing 
because, as noted in Section 2, “Meteorological Data 
Fundamentals for Power System Planning,” gridded  
datasets are easy to process. However, the quality of the 
generation estimates is governed by the quality of the 
model used to create the weather data. For example, the 
considerations discussed in Section 2 including resolu-
tion, parameterizations, and any weather patterns that 
impact systematic errors must be understood when using 
NWP models. It is essential to validate model output in 
the context of a given study. As discussed above, even if  
a broad validation study has shown low average bias and 
error rates across a model domain, large deviations from 
reality may exist at certain times and/or locations.

Aside from the uncertainties of using model-based  
inputs, there are not currently any datasets available that 
meet the requirements of (a) providing all the necessary 
weather data for a long enough time period, and (b)  
having sufficient resolution to properly estimate the  
necessary variables, to estimate generation across a long 
enough time period, especially in locations other than 
flat plains. These gaps, and possible ways to fill them,  
are discussed in more detail in the “Guidance for Using 
Existing Weather Inputs” section below. For now, it  
is worth noting that the National Renewable Energy 
Laboratory’s (NREL’s) WIND Toolkit provides enough 
resolution to capture most features driving wind resources 
but currently does not cover a long enough period, while 
the European Center for Medium-Range Weather  
Forecasting’s (ECMWF’s) ERA5 dataset covers a long 
enough temporal period and is regularly extended but 
does not resolve many regional or local weather features 
driving renewable resources (Molina, Gutierrez, and 
Sanchez, 2021). The National Solar Radiation Database 
(NSRDB) provides good overall estimates of solar  
irradiance, but validation suggests it may not capture 
some of the short-term variability sufficiently for power 

It is essential to validate NWP model output in 
the context of a given study because, even if a 
broad validation study has shown low average 
bias and error rates across a model domain, 
large deviations from reality may exist at  
certain times and/or locations. 
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systems studies (Habte, Sengupta, and Lopez, 2017). It  
is regularly extended, but its 23-year length is not quite 
long enough to use concurrently with wind and load data 
to capture the full envelope of concurrent variability.

Estimating the Generation of Renewable 
Resources Using Historical Generation and 
Empirical Correlations

The second category of methods often used in IRPs  
and similar planning studies is to use actual historical 
renewable generation data for a region and attempt to 
develop empirical relationships between the generation 
data and a longer time series of weather observations 
from one or more nearby sites. These methods benefit 
from being easy to understand and simple to implement. 
They also use standard meteorological observations, 
which are relatively easy to acquire for long time periods. 
However, because they are not physics-based, these 
methods usually suffer from the same issues as using  
a Monte Carlo simulation that does not correctly reflect 
the dependence of each weather input on the others, and 
thus on different components of the electricity system. 
Where models generating data in this way are used, it is 
important that  the data are validated, not just to verify 
that the overall distribution of outcomes for wind or  
solar generation looks realistic, but to confirm that the 
data the models produce meet the concurrency and  

chronology requirements—otherwise, the data will  
not represent the overall balance of supply and demand 
situations that actually occur. Inaccuracies inherent in  
the methodologies described here will grow larger as  
the installed capacity of wind and solar increases.

One empirical method often used is a flavor of the  
“measure, correlate, and predict” method discussed  
in Section 2, “Meteorological Data Fundamentals for 
Power System Planning,” that is used to extrapolate load 
records based on temperature records. The performance 
of this method declines as the time interval being  
predicted gets smaller (e.g., annual adjustment is more 
accurate than monthly, which is more accurate than  
daily) because non-linear physical effects are more  
prevalent at smaller time scales. Moreover, hourly esti-
mates using relationships like these are usually a poor 
representation of actual conditions, especially for wind 
energy and especially if the long time series record is  
not a hub-height wind speed near the site of interest.  
The method will yield a statistical distribution that  
seems reasonable, but the data will not be coincident  
or physically consistent between different variables or 
locations. For example, if MCP is applied to predict the 
wind field at two different locations, or to predict the 
wind and temperature at the same location, the output 
fields will not represent the concurrent physical state  
of those variables for the specific time and location.

Another method sometimes used to extend time series  
of regional renewable output is to take a long record of  
a weather observation together with the shorter overlap-
ping regional renewable resource generation record. The 
generation record is first normalized to current capacity 
values to account for the ongoing increase in renewable 
resource installations. Ideally, this process would take 
into account the impact of technology changes, since 
newer capacity usually generates more energy for similar 
wind speeds, but typically, if these adjustments are made, 
they are rudimentary in nature. Then, for periods with no 
output data, days that are most “similar” are found in the 
overlapping record and applied to the day without data. 
For example, if a 10-year time series of wind generation 
is available and a 30-year record is desired, while a nearby 
long observing record contains 30 or more years of tem-
perature data that overlap, then the average temperature 
for a day in the past for which renewable output is  
unknown (say, March 17, 1991) may be compared to  
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surrounding days in the past for which there is renewable 
output (e.g., all days from March 15 through 19 from 
2011 to 2020). The renewable output for the day with 
the closest temperature match (e.g., March 16, 2015)  
is then used as a proxy for wind generation. 

The idea in this example is to maintain some of the  
relationship between load (via the temperature variable 
and time of year) and renewable output. However, the 
actual combination of possible effects driving temperature 
at the observing site has limited overlap with the effects 
driving renewable generation at the many distributed  
locations. Hence, even if the distributions of possible  
renewable generation outcomes obtained with this  
method approximate those seen in the observational  
record (which they often will, since the resulting data  
are composed of duplicates of the original observations), 
much of the concurrency in time series variables is lost. 
In addition, because regional operational data are usually 
used, geographical diversity effects are lost. The data may 
also contain artifacts like curtailment, outage effects,  
and operational issues that will bias the results and are 
difficult to remove without analyzing the facility-level 
data, which are usually not available.

Water Inflow Data for Hydro Generation

While not the focus of this report, there is significant 
variability in hydro generation capacity from month to 
month and year to year, and this variability needs to be 
accounted for in planning studies. Hydro variability is 
typically evaluated by examining different combinations 
of hydro years, load years, and outage possibilities. There 
are several ways to do this. One of the simplest options  
is to iterate through the combinations of load years, 
hydro years, and different generation outage conditions. 
For example, if one has a 20-year load time series and  
10 years of water inflow data, there are 200 different 
combinations of load and hydro. Each of these 200  
combinations can be simulated multiple times with  
different generation unit outage combinations selected 
for each simulation hour using Monte Carlo methods 
that can vary in complexity from completely random  
to weighted according to the unit history, season, and/or 
weather. In this example, if 100 iterations were performed 
for each hydro and load combination, the total number 
of simulations would be 20,000. However, there are more 

sophisticated ways to increase the sample space, including 
creating many additional load years by combining load 
days from different years in ways that are plausible based 
on analysis of past load trends. For instance, one can use 
a Markov chain approach that randomly walks between 
days in different weather bins according to historically 
observed transitions. Examples of some of these   
approaches can be found in Hart and Mileva (2022).

The methodologies above assume that available hydro 
power capacity is independent of day-to-day weather 
and outage probabilities of any generation on the  
system. Because of the inertia inherent in the water  
cycle processes and the management of water through 
hydro systems, these assumptions are mostly valid.

While the assumption of the independence of water  
inflow data from short-term weather variables allows the 
methods described above to be used to increase sample 
size, water inflow data are still needed for assets present 
in a region being modeled, and the longer the period 
available the more thoroughly hydro variability can be 
accounted for, and the more uncertainty will be reduced.

Weather Data to Estimate Outages and 
Derating Likelihood for All Asset Types

Outage data for bulk system assets are collected by  
the North American Electric Reliability Corporation 
(NERC) as part of the Generating Availability Data 
System (GADS) and Transmission Availability Data 
System (TADS) programs. For generator assets, multiple 
variables are calculated, and the most relevant for resource 
adequacy studies is the forced outage rate. There are 
many variations on how this rate is represented, but  
they are the cornerstone of the resource adequacy studies, 
and the forced outage rates of thermal resources and the 
time-varying production levels of variable renewable  
resources generally drive the study results.

Traditional modeling methods for resource adequacy use 
these forced outage rates to calculate the probability of  
a resource shortage in every hour of the study (one or more 
years). Currently, most modeling frameworks assume 
that these outages are uncorrelated and the forced outage 
rates are generally not linked to weather. This means  
that current resource adequacy models cannot generally 
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23 See also Dison, Dombrowsky, and Carden (2022).

account for correlated outages of hydro-thermal resources 
or correlations between thermal outages and wind or  
solar availability, including those outages that are linked 
together by severe weather. Yet studies show that weather 
that creates peak loads across a region also increases  
the likelihood of generation and transmission outages 
(Murphy, Sowell, and Apt, 2019; Allen-Dumas, Binita, 
and Colin, 2019).23 Recent events such as winter storms  
Elliott (2022) and Uri (2021) and summer heat waves, 
together with an increased focus on climate risks, have 
brought more attention to this area. 

Extreme weather can result in multiple parts of the  
system failing simultaneously (known as common mode 
failures), while very high or very low temperatures simul-
taneously drive high loads. For example, during extreme 
winter weather, coal piles can freeze, gas turbine air inlets 
can become iced, and gas supply to generators can be 
limited due to conflicts with demand from commercial 
and residential heating, frozen wellheads, or loss of  
pressure at the gas compression stations. Wind turbines’ 

blades can become iced, or turbines can shut down due 
to low temperatures, and solar panels can be covered in 
snow and ice. In the summer, equipment can overheat, 
and a lack of cooling water (or cooling water that is too 
warm) may result in thermal plant derating or outages.

Incorporating these relationships in power system  
simulations requires detailed records of outage events at 
each generation plant and accurate local weather data to 
correlate to the events. Such data are easy to record, and 
the problem is more one of reporting and sharing than  
of technical feasibility. Generation outage or derate codes 
that are used in an event are not always reflective of the 
original cause of outage or derate. Generation outage 
codes are also often not granular enough to be able to 
distinguish various causes of outage or derating related 
to different weather phenomena. In some cases, the 
weather data are regarded as proprietary and are not 
shared in ways that would help in system analysis. For 
generating resources that come online in the future, 
weather information at potential future sites will help 
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analyze risk. Several of the datasets that are already  
available, to be discussed in Section 4, “An Ideal Weather 
Inputs Database for Power System Planning, and  
Comparison to Currently Available Data,” can in many 
cases be used as a proxy for this. For cases where more 
detailed data are needed, the proposal in Section 5 for 
producing more complete wind and solar datasets will 
also yield much of the required meteorological data,  
although additional work may need to be done to  
model water intake temperatures for thermal plants.

Weather Data to Assess Transmission  
and Distribution Risk

The actual energy a transmission or distribution line  
can carry is a function of environmental conditions. 
Electricity passing through any conductor will result  
in resistive heating, and as the conductor warms, it  
will expand and sag. This heating is a function of the 
conductor type and the current being carried. Mean-
while, the heat dissipation rate is a function of ambient 
temperature, wind speed, and solar insolation. This effect 
of environmental conditions means that the true limits 
of a line—the dynamic line rating—can be different 
from the static rating, and in many cases additional  
capacity is available. In operating electricity systems, 
temperature sensors on transmission lines can allow  
additional current to be carried when conditions allow. 
This is particularly useful as wind generation increases, 
because lines may be able to carry wind energy that  
otherwise would require expensive line upgrades to  
accommodate. On the other hand, extreme temperatures 
can result in line deratings. Analyzing these effects in 
power system models requires concurrent information 
about wind, temperature, and irradiance along the  
line path.

Transmission and distribution can also be forced out by 
wildfire (or wildfire risk), lightning, extreme winds, and 
extreme icing. Wildfire risks usually result in temporary 
de-energization to prevent ignitions, active fires cause 
de-energization to protect equipment, and smoke from 
wildfires can cause short-circuit faults on the power  
lines leading to line outages if attempts to clear the  
fault (by disconnecting and reconnecting the line) are 
unsuccessful. Lightning damage is typically recovered 
from quickly. However, extreme winds and icing can be 
catastrophic, as the loss of a major line can take weeks  

or even months to repair, during which time the system 
is much more vulnerable to other outages or derates. 
Many of the same risks apply to both transmission and 
distribution, but distribution outages usually result in the 
loss of local load and thus are not a major risk to broader 
system reliability (although the increase in BTM  
generation makes this separation less clear).

While the impacts of weather on the transmission  
and distribution systems are mostly limited to extreme 
events, such events often occur as part of the common 
mode failures described above for generator outages and 
derates. Therefore, as weather datasets are developed to 
address the other system components discussed in this 
section, it is worth keeping transmission and distribution 
impacts in mind, and, where possible, ensuring that new 
meteorological datasets provide synergistic coverage  
of these impacts.

Incorporating Supply and Demand   
Forecast Errors into Power System   
Modeling

During power system operations, forecasts of load, wind, 
and solar for the operating horizon are used to facilitate 
market function, security-constrained unit commitment, 
and real-time dispatch. Here, the term “forecast” is being 
used according to the first usage in Box 1 (p. 11), an estimate 
of future conditions in an operational time frame. To  
reduce confusion we will call such forecasts “operational 
forecasts.” During actual operations, the load and  
generation will have been forecasted multiple times at 
different lead times, most commonly day ahead, hour 
ahead, and a few minutes ahead. Power system analyses 
of market operations, unit commitment, and/or dispatch, 
such as those performed for integration studies with  
production cost models, can make an assumption of  
perfect foresight, but it is more realistic to incorporate 
imperfect forecasts that have a similar level of accuracy  
as that achieved by operational forecasts. Therefore, for 
this use case, time series that provide estimates of load 
and wind and solar generation for use in the modeling 
also need corresponding operational forecasts for each 
time interval, and each time interval typically requires  
an operational forecast for several different lead times. 
Thus, if the weather data being used to estimate reality 
are being synthesized, we also need to do another level  
of synthesis to produce the corresponding operational 
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24 To the knowledge of the authors, the WIND Toolkit is the only dataset designed specifically for wind integration studies that contains a companion 
“forecast” dataset.

forecasts, and “forecast” data need to have the same  
“accuracy” characteristics relative to the synthetic data as 
the real operational forecasts have relative to the real data. 

The simplest way to incorporate a level of uncertainty  
or error into power system modeling is to determine the 
typical forecast error level in operations by comparing  
to actual loads and generation at various operating  
gate closure times (e.g., day ahead, hour ahead, and  
10 minutes ahead). This can be done at varying levels  
of sophistication that account for different times of day, 
different seasons, and different weather regimes. It is  
especially important to assess the accuracy of operational 
forecasts during periods of weather transition, as this 
tends to be when the largest errors in wind, solar,  
and load forecasts occur, and the errors often exhibit  
synchronicity. Once typical error levels are known, they 
can be used to develop synthetic operational forecasts  
for use in power system models by perturbing the load, 
wind, and solar data according to the error levels. These 
forecasts can be scaled to perform sensitivity tests at  
differing levels of accuracy. Ideally, forecasts used in  
operations are probabilistic and contain information 
about the distribution of uncertainty. Probabilistic  
forecasts provide more information that can be used,  
for example, to create scenarios for stochastic modeling 
or characterize system risk.

This approach has some shortcomings. One is   
that operational forecast data are often proprietary.  
Additionally, operational forecast data do not provide 
information about the forecastability of future generators; 
that is, the skill of a power output forecast for a wind 
farm cannot be determined until the wind farm is built 
and the forecast for any given time can be compared to 
actual output at that time. And, as noted, forecastability 
is a function of weather regime. Therefore, to provide  
an accurate representation of forecast accuracy for any 
given time in a power system modeling exercise requires 
forecast data that are representative of the forecast skill 
for the weather occurring for the time and location being 
modeled. For this reason, the NREL WIND Toolkit 
contains a wind forecast component in addition to the 
main dataset intended to represent ground truth.24 The 
Toolkit contains forecast datasets at several lead times 

representing typical decision points so that simulated 
functions like unit commitment and dispatch can be 
modeled based on data that mimic the accuracy and  
autocorrelation of then-state-of-the-art wind forecasts. 
However, forecasting quality has improved significantly, 
and the WIND Toolkit forecasts no longer represent 
state-of-the-art accuracy. Since the WIND Toolkit was 
produced in 2014, the deployment of renewables has  
increased dramatically, and since existing renewable  
assets are generally located within the same microclimates 
as most future assets, the accuracy of future forecasts  
can be better determined now than in the past, using  
statistics from forecasts for existing assets. 

Lastly, geographical diversity and the increasing   
deployment of storage will also begin to erode the  
impact of short-range (minutes ahead) forecast errors, 
but forecasts in the hours-ahead to day-ahead range  
increase in importance due to the need to optimize  
storage charge and discharge. With all these factors  
in mind, for some applications, it may be necessary to 
generate a forecast dataset in a similar manner to that 
produced for the WIND Toolkit, in order to provide the 
best possible reflection of expected skill of predictions 
used for unit commitment and dispatch tasks in   
power system models.
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4

S ECT I O N  4

An Ideal Weather Inputs Database for  
Power System Planning, and Comparison 
to Currently Available Data

This section gives a list of the data and data  
attributes needed for a weather inputs database 
used for power system modeling. These compre-

hensive data meet the requirements to account for and 
study the increasingly weather-driven aspects of the  
electricity system. This section describes the required 
variables, spatial and temporal resolution, and time series 
length. We examine the extent to which the currently 
available data can be used on their own or collectively to 
meet these needs against these criteria to reveal the gaps. 
Then, having concluded that no combinations of data or 
datasets are available that fully meet the needs of power 
system modelers and planners, a proposal is offered in 
Section 5 for how these gaps can be robustly filled.25

The Data and Attributes of Ideal System 
Planning Weather Inputs

Currently, the most fundamental and urgent weather 
data need for conducting system planning studies in 
most regions is accurate wind speed, solar irradiance,  
and temperature data for every plausible location in  
the region of interest, and, if imports and exports are  
to be correctly modeled, for all interconnected regions. 
However, to develop power production and load profiles, 
several additional variables are required to describe the 
complete range of weather impacts discussed in the  
previous section. Most power system modeling requires 
hourly or better granularity of these data, with 5-minute 
intervals the preferred granularity for some production 
cost modeling applications to assess ramping capability 
and reserve needs. To properly capture overall weather 
variability, several decades of data are needed. Datasets 
meeting these criteria would make it possible to carry 
out power system studies that evaluate the impact of  

potential renewable resource expansions as well as enable 
assessments of extreme weather and its impact on grid 
reliability. Such studies are a prerequisite for planning 
and building a reliable low-carbon power grid with  
large amounts of weather-driven generation capacity.

Table 1 (p. 61) lists the main attributes of time series 
data necessary to meet general power system modeling 
needs.

In addition, a specific organization or entity will need  
to assume responsibility for curating the data, including 
providing quality control and validation, flagging issues, 
advising on best practices for its use, and evaluating the 
need for and scope of periodic updates.

We want meteorological data produced for power  
system models to reflect actual conditions, but sufficient 
observations are not available for any study beyond a very 

25 For definitions of terms that some readers may be unfamiliar with, please see the glossary at the end of the report.

The most fundamental and urgent weather 
data need for conducting system planning 
studies in most regions is accurate wind  
speed, solar irradiance, and temperature data 
for every plausible location in the region of  
interest, and, if imports and exports are to  
be correctly modeled, for all interconnected  
regions. However, to develop power production 
and load profiles, several additional variables 
are required to describe the complete range  
of weather impacts.
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Including the  
necessary variables

Include the necessary variables at sufficient spatio-temporal resolution and 
accuracy to reflect actual conditions that define the generation potential at 
current and future wind/solar sites and temperature at load centers

Covering multiple 
decades with ongoing 
extension

Cover multiple decades with consistent methodology and be extended on an 
ongoing basis to capture the most recent conditions and allow climate trends 
to be identified

Coincident and  
physically consistent

Are coincident and physically consistent, in space and time, across weather 
variables

Validated Are validated against real conditions with uncertainty quantified

Documented Are documented transparently and in detail, including limitations and a  
guide for usage

Periodically refreshed Are periodically refreshed to account for scientific and technological  
advancements

Available and  
accessible

Publicly available, expertly curated, and easily accessible

TA B L E  1

The Main Attributes of Time Series Data Necessary  
to Meet General Power System Modeling Needs

Source: Energy Systems Integration Group.

small spatial scale, and a sufficiently long history to  
capture climatology will likely never be available. This, 
and the other attributes in the list above strongly suggest 
that the production of such a dataset will need to use  
numerical weather prediction (NWP) modeling approaches 
and that high-resolution reanalysis and/or downscaling 
NWP methodologies are the best fit. Generative adver-
sarial network (GAN) machine learning methods also 
show promise for producing sufficient spatio-temporal 
resolution at lower overall computational cost than  
using only high-resolution NWP modeling, and other 
statistical post-processing methods could be applied  
to correct known NWP model biases. Each of these 
methods are detailed in Section 3 above, “Weather  
Inputs Needed for System Planning.”

Their use allows the resultant dataset to be anchored on 
as many observations as possible, while at the same time 
the full dynamics and physics of the NWP system can 
produce dynamically consistent and realistic fields where 

observations are not available, especially in complex  
topography. In the discussions below there is a general 
assumption that use of NWP methods will be necessary 
to satisfy the requirements for power system modeling 
weather inputs. As described in Section 2, “Meteorologi-
cal Data Fundamentals for Power System Planning,”  
several factors impact the quality of a dataset that has 
NWP at its foundation, and these are reiterated   
where appropriate below.

The use of NWP modeling allows the resultant 
dataset to be anchored on as many observations 
as possible, while at the same time the full  
dynamics and physics of the NWP system can 
produce dynamically consistent and realistic 
fields where observations are not available,  
especially in complex topography. 
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ATTRIBUTE 1: Includes the Necessary Variables 
Across Required Regions with Sufficient  
Spatial and Temporal Resolution to Meet  
Power System Modeling Study Needs

Sufficient Spatial Resolution

Datasets must be produced by processes that provide  
sufficient spatial resolution to accurately resolve the  
phenomena impacting supply and demand. This means:

• Knowing temperature in enough detail to accurately 
predict its impact on load

• Specifying variables driving wind and solar in enough 
detail to quantify the generating potential at every 
plausible generation site

• Having information about weather phenomena at  
a scale that can be used to estimate their impact on 
thermal generation derates and outages, transmission, 
and distribution

Wind resource is the limiting factor in determining  
how to use models to fill in gaps in observations, because 
the wind field is heavily influenced by topography and 
near land and water interfaces. To be able to estimate  
the output from wind plants driven by (or even just 
modulated by) phenomena like sea breezes, gap flows,26 
and mountain-valley circulations—at the granularity 
needed for system planning—will require that the data 
points are no more than 2 km from the point of interest, 
and ideally much less. Even in the Great Plains of the 
U.S. the wind field varies significantly across rolling  
hills. In this case, the sources of this variability are  
much simpler than in areas of complex terrain and can 
be corrected by statistical post-processing in places with 
an observational record (as discussed in Section 3);  
however, observations to drive these corrections are  
not available in many locations. 

Figure 11 (p. 63) illustrates why spatial resolution is  
important, using examples from two wind plants in the 
Pacific Northwest. The Big Horn wind plant is built  
in steep terrain, and the turbines at the north end are at 
elevations several hundred meters higher than those at the 
south end. The top left panel shows how, in the summer, 
the wind resource is primarily driven by gap flow 

through the Columbia Gorge, which can be quite  
shallow and often does not reach the higher-elevation 
turbines in the northern part of the plant. The bottom 
left panel shows how, in the winter, the higher-elevation 
part of the wind plant often experiences strong winds 
from the southwest as storm systems pass by, but the 
lower elevations remain entrenched in a layer of cold, 
stable air that prevents the momentum from mixing 
down. On the top right, it can be seen that higher ridges 
to the west sometimes excite semi-stationary mountain 
waves that will migrate slowly across the plant, leading to 
extreme differences in wind speed across short distances. 
The bottom right shows how the Klondike (KL1, KL2, 
KL3, KL3A), Hay Canyon (HC), and Star Point wind 
plants, which sit a short distance to the southwest, are 
also impacted by mountain waves. In addition, this area 
can come under the influence of the wake generated by 
Mount Hood about 100 km to its west. The impact of 
the wake can be seen in the low wind speeds cutting 
through the Klondike 3A wind farm in this graphic. 

26  Gap flows are a phenomenon driven by the interaction of atmospheric pressure fields with topographical features like mountain gaps, passes, gorges,  
canyons, and channels.

While it is not necessary to resolve the wind 
speed at every turbine in a power systems  
dataset, it is important that the dataset   
estimates the impacts of features like those 
described in the example at least to a level 
where the regional wind generation can   
be accurately modeled.

Section 3 describes the importance of model resolu- 
tion when using NWP to produce a representation of 
atmospheric structures that are influenced by terrain  
and surface characteristics. While it is not necessary  
to resolve the wind speed at every turbine in a power  
system dataset, it is important that the dataset estimates 
the impacts of features like those described in this example 
at least to a level where the regional wind generation can be 
accurately modeled. For instance, in the Columbia Gorge 
there are many wind plants like Big Horn that span  
considerable elevation or, like Klondike and Big Horn, 
are impacted by waves and wakes. If an NWP system is 
used at a resolution that does not resolve the existence  
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Top left: A shallow summertime gap flow event causes high output at lower-elevation southern turbines 
while the northern turbines are below cut-in. Top right: Strong southwest winds during a winter storm 
power turbines at higher elevations, while stable air prevents this momentum reaching lower-elevation 
machines. Bottom left: Mountain waves lead to dramatic east-west output differences. Bottom right:  
The wake of Mount Hood at a nearby plant on a plateau on the south side of the Gorge.  

Source: Iberdrola Renewables.

F I G U R E  1 1 

Turbine Wind Speed Maps for Two Wind Plants in the Columbia Gorge of  
the U.S. Pacific Northwest, Showing Horizontal and Vertical Variabilityof NWP

of features like those in Figure 11—if it cannot “see” 
them—it will not be able to produce wind fields that 
correctly estimate the hourly output from these facilities. 
In this case grid spacing of at most 1.33 km is necessary 
to resolve the features (Sharp and Mass, 2002). Output 
from NWP modeling performed at a lower resolution 
will require refinement by downscaling with higher- 
resolution NWP or methods like the GAN machine 
learning technique described in Section 3, or will need  

to be statistically corrected. Statistical correction will  
be difficult in remote locations (where future wind plants 
may be sited) because observations are not available or 
are of poor quality. Note that GAN downscaling requires 
some high-resolution output to train the downscaling 
method and has yet to be fully proven, so data produced 
this way need to be especially well validated. In any 
event, including when only high-resolution NWP is 
used, it is crucial that the model data are validated (see 
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below) as extensively as observations allow in order to 
understand the limitations of the modeling method.

Sufficient vertical resolution is also needed in models 
used to derive wind data. Near the surface, the desire is 
to realistically capture some of the vertical structure of 
the atmosphere across the rotor layer as it evolves through 
the diurnal cycle. Enough vertical levels are needed so 
that model output at multiple heights near the surface is 
not merely an extrapolation across three or fewer model 
height levels. This will generally improve the accuracy of 
different hub-height predictions. In addition, the strength 
of the wind resource is often heavily influenced by regions 
of strong atmospheric stability near the surface, and a 
lack of vertical resolution may result in the sharp vertical 
gradients in fields like wind and temperature not being 
sufficiently resolved. Lastly, if feasible, model levels should 
be configured so that the output in the rotor plane requires 
minimal interpolation. It should be recognized, though, 
that achieving the type of resolution where wind shear 
across the turbine rotor can be resolved is difficult  
in NWP modeling, and validation studies should be  
performed to determine the model’s skill in describing 
reality rather than assuming that vertical structure is  
accurate in all weather regimes.

Resolution is also important in some regions for defining 
the complexity of fields impacting solar generation poten-
tial, especially if NWP output is being used instead of 
model-processed satellite data to predict clouds and 
aerosol components. NWP output may also be valuable 
for producing temperature fields for more advanced 
treatment of load forecasting. Here again, sufficient  
resolution is crucial if small-scale features have significant 
effects, such as in coastal cities like San Francisco, where 
large temperature gradients can exist across short  
distances due to marine effects.

Data for Wind Generation Estimation

To make an approximation of wind generation, wind 
speed near hub-height is needed. Wind speed accuracy is 
a major factor in reducing uncertainty in the generation 
estimate, primarily because generation scales with the 
third power of wind speed in the part of a wind turbine 
power curve between cut-in and the knee of the power 
curve (Figure 12, p. 65). The sensitivity of the generation 
estimate to changes in wind speed is further complicated 
by the region of zero generation below cut-in speed, the 
flattening of the cubic curve toward rated speeds (as the 
blades begin to pitch), and the impacts of high wind 
speed cut-out and hysteresis at high wind speeds.

Since wind observations are not available at the spatial 
and temporal density needed for power system modeling, 
the most accurate alternative is output from NWP mod-
els. Wind is calculated at each point in an NWP model 
at every time step in the modeling process, and since the 
internal model time step is usually considerably shorter 
than the shortest required interval for power system 
modeling (about 5 minutes), NWP models can produce 
the required temporal resolution. No model can consis-
tently predict wind speeds to within the 1–2 m/s range 
that is needed, so model data must be validated against 
wind observations wherever possible to develop insight 
into the skill and uncertainty of the model and the  
resultant impacts on generation estimates. If possible, 
some form of bias correction should be applied if model 
distributions are found to deviate considerably from  
observations.

Datasets for power system modeling need to include 
wind data at several levels from the surface through to 
300 meters to provide wind speed throughout the rotor 
layer for many different possible hub heights, including 
those of the tallest offshore turbines. It is crucial not  
to extrapolate near-surface (10 m) winds to hub height,  
because at night the surface decouples from the free  

Achieving the type of resolution where wind 
shear across the turbine rotor can be resolved 
is difficult in NWP modeling, and validation 
studies should be performed to determine the 
model’s skill in describing reality rather than 
assuming that vertical structure is accurate  
in all weather regimes.

It is crucial not to extrapolate near-surface  
(10 m) winds to hub height, because at night 
the surface decouples from the free atmosphere 
above so that hub-height winds increase while 
surface winds decrease.
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Wind Turbine Power Curve

V1                               V2    V3                                   V4    V5

Wind Speed (m/s)

Wind turbines are sensitive to small changes in wind conditions. V1 is the cut-in wind speed, the speed 
above which a turbine begins generating power. V3 is the rated wind speed, the speed at which the  
turbine reaches its rated power output; at speeds higher than this, no additional power available in the 
wind is captured, as the generator cannot further increase its output. V5 is the cut-out wind speed, the 
speed at which the pitch of the turbine blades reduces the output to 0 to protect the turbine. Operation 
of the turbine is suspended until the wind speed has slowed to V4 before it goes back up again, cycling 
between V4 and V5.

Source: Energy Systems Integration Group.
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atmosphere above so that hub-height winds increase 
while surface winds decrease. Wind direction is useful 
for refining generation estimates, as wind plant power 
curves can be developed that account for the different 
levels of waking from different directions. 

Temperature is useful, ideally at regular intervals from 
the surface to the top of the blade-swept area, although  
a single value somewhere between 50 m and 100 m  
will suffice. It is used to determine air density, which  
is a secondary variable in calculating power generation  
and can be important when building time series for  
prospective sites that do not have any generation data 
that can be utilized to create a plant power curve  
(which bakes in density effects).

Temperature at multiple levels through to the top of the 
blade-swept area is useful to determine other features  
of the operating environment. First, it gives an indication 
of the presence of strong surface stability. The presence  
of strong surface stability is an indicator that the model 
winds might be less accurate than usual because NWP 
models are notoriously poor at handling stable boundary 
layers and mix them out too quickly. Second, hub-height 
temperature can be used to determine whether cold or 
hot weather shutdown is likely. Lastly, relative humidity 
is also a useful variable, as the combination of tempera-
ture and relative humidity is an indicator that icing might 
be present. Icing dramatically impacts turbine performance 
and often shuts turbines down completely. 
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Wind speed and direction, temperature, and relative  
humidity are all variables that are part of core NWP  
calculations and thus will be available at the temporal 
frequency required for power system modeling.

Data for Solar Generation Estimation

Producing a first-order estimate of solar photovoltaic 
(PV) production requires global horizontal irradiance 
(GHI), while estimation of concentrated solar power 
production requires direct normal irradiance (DNI).  
Surface measurement density of these variables is quite 
sparse; therefore, they must be modeled. The two ways  
to do this with the coverage and accuracy required are 
through using NWP models or using models that derive 
these variables directly from satellite observations.27  
Both methods produce model data that are anchored  
to observations, but it should be understood that they  
are not direct observations; the nature and magnitude of 
uncertainties in the estimates vary and have implications 
when using them to determine expected output from solar 
generators. More details can be found in Appendix B.

Solar generation is also significantly impacted by  
panel backplane temperature, which is largely a function 
of ambient temperature and wind speed. Of course,  
measurements of temperature on the panels are by far 
the best estimate of panel temperature since it is heavily 
impacted by local microscale effects—a panel on a black 
roof will get hotter than one on a rack in a grassy field. 
But measurements typically are not available across  
the required time frames, so having somewhat accurate 
near-surface wind and temperature data in a convenient 
dataset is helpful in adjusting the output expectations. 
For existing plants, long NWP-based records can be 
tuned against actual observations.

Weather data indicating the presence of weather impacts 
that can dramatically impact generation estimates are 
also valuable. Indications of frozen precipitation (snow 
and ice) allow assessment of the risk that output estimates 
may be dramatically incorrect due to panels being covered 
by snow. And while it is not possible for an NWP model 
to predict wildfire ignitions, it is possible to estimate 
wildfire risk based on temperature, relative humidity, and 

27 The data assimilation process in NWP performs a similar task of deriving irradiance data from observational satellite measurement for the NWP initial condition.
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wind speed. Including diagnostics based on these  
variables would allow users of power system modeling  
to determine periods where modified inputs could be 
used to stress-test high-risk periods.

Data to Estimate Gross Demand

As noted numerous times, temperature is the driving 
weather variable for demand. However, humidity, cloud 
cover, solar angle, and wind speed also contribute. These 
variables are measured at many surface observing sites 
and tend to be of higher quality and density in high  
population areas which also define load. The data are  
also always available in datasets derived from NWP  
as required variables in atmospheric modeling. It is  
important to note that raw NWP temperature data,  
even from reanalysis datasets, may differ from actual 
measured surface temperature observations, because they 
represent the average of the grid cell and so may deviate 
due to differences in model elevation and land surface 
characteristics relative to actual observations, especially  
if the grid cell is quite large. However, if it is necessary  
to augment observations with model data to extend the 
time series length, sufficient time series of measured 
temperature are nearly always available to bias-correct 
the model output.

Data to Estimate Hydro Potential

The weather dependence for hydro power is ultimately 
manifested mostly in streamflow variability, which is a 
function of rainfall, snowfall and snowmelt, and ground-
water charge. Therefore, precipitation amount and type 
and the temperature of snowpack all apply. Unlike 
weather impacting wind and solar generation, there is 
considerable delay between weather occurring and the 
effect on hydro capacity, and human-directed water  
management also plays a large role. Given that the data 
challenges for hydro are different from those of solar, 
wind, and load—being multi-sectoral and significantly 
dependent on hydrological modeling to capture the  
effect of precipitation, water inflow, and surface run-off, 
and because historical water inflow and independent  
stochastic selection methods are likely sufficient for  
handling weather impacts on hydro power in many  
power system applications—weather data for hydro  
will not be considered in this section.

Data to Estimate Outage and Derate Probabilities 
and Other Weather Influences

Section 3, “Weather Inputs Needed for System Planning,” 
outlined the weather affecting outages and derates of all 
electricity system assets. Near-surface variables for fields 
such as temperature, wind speed, and frozen precipitation 
are all needed. Weather observations probably provide 
enough coverage of the extent and duration of frozen 
precipitation to allow the impacts to be handled in  
power system models that are sophisticated enough  
to include it now or in the future, but NWP methods 
will produce an estimate of frozen precipitation in a  
convenient, easy-to-process gridded format, so it is  
recommended that these data be archived.

Other Meteorological Data

General Meteorological Data Defining Atmospheric State

Output from NWP models contains data necessary  
to restart the NWP process with another model (or the 
same one with a different configuration) or to perform 
advanced post-processing like the GAN methodology. 
Thus, saving it could be useful for refining the output. 
The data are also useful for research and data-mining 
tasks that could inform power system modelers of  
trends and uncertainties in a model dataset. Therefore,  
if considerable investment is made to produce such  
datasets, it does not make sense to throw away all of the 
data not immediately of value to power system modeling. 
However, high-resolution models spanning continental-
sized domains can contain tens of millions (possibly 
hundreds of millions) of grid points, each with a suite  
of variables, for every output hour. Thus, for long time 
series data, compromises must be made. Where modeling 
approaches are used, it is recommended that as much 
near-surface information as possible be archived, as  
well as data from levels typically used to analyze and 
characterize meteorological regimes. However, it does 
not make sense to be overly prescriptive here, and the 
exact definition is best left to a technical review   
committee (see Section 5).
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28 To clarify, “forecast data” in this context refers to weather data used to prepare forecasts of load and wind and solar generation that are then used in  
power system models to reflect operational foresight relative to the estimates of the load, wind, and solar generation that represent the ground truth  
of what occurred for the same period.

Forecast Data28

Any dataset representing forecasted estimates for use  
in unit commitment and dispatch functions of power 
system planning should contain all the information 
needed to estimate hourly load at any node and wind 
and solar at any generator as if it was being forecast  
for real-time operations. The forecast horizon needs to 
satisfy unit commitment and dispatch gate closure lead 
times (and ideally market function lead times as well), 
accounting for the time needed in an operational setting 
to produce the forecast. The forecast data need to have 
the same correlation with the “truth” dataset (in terms  
of accuracy) as current state-of-the-art for load and gen-
eration forecasting systems. Because load and generation 
forecast skill is evolving and system gate closures get  
updated, and because planning studies that model  
forecast uncertainty are a less common subset of power 
system modeling applications, it is recommended that a 
separate effort determine where it is valuable to produce 
wind, solar, and load forecasts as companions to ground 
truth datasets for system planning use, and whether it  
is best to produce them separately from an effort to  
develop a ground truth dataset.

Recommendations

To support accurate modeling of wind speed and direc-
tion, datasets should have horizontal resolution sufficient 
to resolve the wind field and vertical resolution sufficient 
to resolve surface inversions, several levels within the ro-
tor plane, and sharp inversions capping flows driven by 
phenomena such as sea breezes and topography. Meeting 
these requirements for wind will usually provide for im-
proved representativeness of solar and temperature data 
as well when the same source of model data is used. As 
noted, vertical resolution is variable in NWP models; the 
selection of levels is beyond the scope here and needs 
careful consideration by experts based on the application. 
Horizontal resolution of 2 km or better is required if 
complex topography is present. The topography of the 
continental U.S. is complex enough from the Rocky 
Mountains west and in the Appalachian Mountains that 
a grid spacing of 1 km is recommended, although 2 km 
might provide passable data. While the Midwest likely 

does not need this level of resolution, splitting the country 
into different domains introduces its own problems (such 
as dataset seams) and is not recommended. In addition, 
since shallow cumulus clouds and deep convection  
are both common in the Midwest (and profoundly and  
rapidly impact wind and solar resource, as well as tem-
perature), this also makes resolutions of 2 km or better 
desirable since modern NWP models can explicitly  
resolve these phenomena at these resolutions.

For some applications, power system modelers would 
like data that have a 5-minute time resolution to align 
with typical dispatch intervals. This would allow the intra-
hour variability of load and renewable resources to be 
assessed in production cost models. However, many power 
system modeling efforts utilize hourly data to reduce 
computation time and make problems more tractable.

Assuming that NWP is used as part of the process to 
produce the necessary data, it is technically feasible to 
produce data at 5-minute intervals. Even at a relatively 
low resolution like 10 km grid spacing, most NWP models 
would be integrated at a time step of one minute or  
less. The higher the resolution, the shorter the time step 
needed to maintain numerical stability. However, there 



WEATHER DATASET NEEDS FOR PLANNING & ANALYZING MODERN POWER SYSTEMS    ENERGY SYSTEMS INTEGRATION GROUP  69    

are some caveats for outputting this frequently. First, 
shortwave and longwave radiation parameterizations  
in NWP models are performed less frequently than  
the dynamical time step, as they are computationally  
expensive, although newer schemes like the Fast All- 
Sky Radiation Model for Solar Applications (FARMS) 
developed by NREL allow for fast radiation calculations 
every model time step with minimal degradation in  
accuracy (Xie, Sengupta, and Dudhia, 2016). It should be 
noted that the reference configuration of the Mesoscale 
and Microscale Meteorology Laboratory’s WRF-Solar® 
model ( Jiménez et al., 2016) employs both FARMS as 
well as a traditional two-stream shortwave and longwave 
radiation parameterization scheme (a rapid radiative 
transfer model (RRTMG)) to capture aerosol-cloud-
radiation feedbacks that are critical for accurate irradiance 
predictions, as well as improving the accuracy of radiation 
calculations between model time steps. 

Second, data users should realize that NWP models  
represent average changes over grid cells and will not 
capture all the variability that exists. Third, if a reanalysis 
method is used for data synthesis, 5-minute output  
is unlikely to properly capture the evolution, as the  
frequency is higher than many of the observations being 
assimilated. Lastly, outputting high-resolution gridded 
data at 5-minute intervals can create input-output  
bottlenecks as data are written to storage, and it also  
dramatically increases the volume of data created.

Reconciling all of these trade-offs, below is a summary  
of the recommended specifications of dataset variables 
and spatial and temporal requirements.

Required data at a time interval of no less than 15  
minutes, and horizontal grid spacing of 2 km or better:

• Wind speed and direction at 10 m, 25 m, 75 m,  
100 m, 125 m, 150 m, 200 m, 300 m

• Temperature at 2 m, 10 m, 25 m, 75 m, 100 m, 125 m, 
150 m, 200 m, 300 m

• Relative humidity at 2 m, 100 m, 300 m, or   
alternatively a post-processed icing risk field

• GHI, DNI, and diffuse horizontal irradiance (DHI)

Recommended data at an interval of no less than  
hourly, with a grid spacing of 2 km or better:

• Accumulated rainfall and snowfall, and precipitation 
type (hourly)

• All other model surface data and 2D fields

• All data from native model levels below 1 km above 
ground level. This will be useful for academic and  
applied research.

• Primary prognostic data (air temperature, pressure, 
water vapor mixing ratio, horizontal and vertical wind 
components) interpolated to standard meteorological 
pressure levels from the surface to 300 hPa (1000,  
925, 850, 700, 500, and 300 hPa)29

ATTRIBUTE 2: Covers Multiple Decades with 
Consistent Methodology and Is Continuously 
Extended

Weather input datasets need to cover a climatologically 
valid time span if they are to capture the inherent  
variability in the atmosphere. Typically, atmospheric  
scientists have considered a 30-year period as sufficient 
to capture most of the variability that is expected.  
However, even longer periods are required to capture  
the tail—extreme weather events that are critical when 
assessing power system reliability. Ideally the longest  
datasets possible are desired to capture as much vari-
ability as possible and derive information about events  
in the tails of the distribution. 

The other side of the coin is the impact of climate 
change. While datasets going back 60 years or more are 
probably representative of variability and conditions for 
wind and solar resources, there is no question that overall 
temperature distributions have changed, and this is likely 
beginning to impact other weather fields. Longer datasets 
are more likely to reveal climate change signals, and  
datasets that are continuously extended in the future are 
the best way to ensure that trends can be detected and 
evaluated as they develop.

Datasets covering large areas for long durations are  
essential to capture the full range of possible conditions 
and long-term trends. NWP methods are core to  

29 Prognostic variables provide information about atmospheric state that can be used to both describe the state and predict the future state. These are   
the most useful variables that meteorologists can use to understand how the atmosphere is evolving and are the basis for performing forecasting tasks.



WEATHER DATASET NEEDS FOR PLANNING & ANALYZING MODERN POWER SYSTEMS    ENERGY SYSTEMS INTEGRATION GROUP  70    

producing these. Importantly, the data availability  
to produce high-quality initial conditions for NWP 
modeling has been enabled by weather satellites, which  
is important to recognize when deciding how far into  
the past to develop power system weather inputs using 
NWP modeling techniques. While we want the longest 
dataset possible, we do not want to utilize poor-quality 
data—which generally means going back no further than 
1990. The year 1978 is generally considered the beginning 
of the satellite era for weather prediction purposes, and 
our ability to monitor the detailed atmospheric state has 
improved dramatically since then. (More details about the 
impact of weather satellites can be found in Appendix B.) 
As new remote-sensing instruments are deployed, initial 
condition quality continues to improve, albeit much 
more slowly now. When using datasets created with 
NWP methodologies, it should be recognized that the 
quality of the data is a function of the observations going 
into them, as well as the model resolution. Even when 
using modern models to assimilate data, earlier periods, 
especially before the satellite era, contain higher biases 
and deficiencies because of this. These may be difficult  
to detect because the observing network contained  
much less detailed information than the grid data.

Another possible source of inconsistency in a multi-
decadal dataset is the use of non-standardized model  
set-ups. NWP data that are archived from operational 
forecasting are sometimes used as weather input to  
energy system modeling. However, this should be done 
with extreme caution, for two reasons. First, the model 
used to generate the operational forecast data is unlikely 
to be consistent throughout the period of interest.  
Operational models are regularly updated to incorporate 
new developments from the research community (for  
example, improved parameterizations) or to increase  

Extreme caution should be exercised if   
using NWP data archived from operational 
forecasting as weather inputs to energy system 
modeling. The model configuration used to 
generate the operational forecast data is  
unlikely to be consistent throughout the entire 
period of interest. In addition, operational  
models prioritize timeliness over producing the 
best possible initial condition and predictions.
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resolution or size of the region being modeled as  
computational power increases. Each time an update  
is made, model biases and error levels may change. This 
might seem trivial, but consider that above cut-in, within 
the low-speed region of the wind turbine power curve 
(see Figure 12, p. 65), a 2 m/s change in wind speed  
can triple the power output. Thus, a small systematic 
change in wind speed bias when the model configuration 
changes can appear as a significant change in average 
generation. Aside from potentially changing the supply 
and demand balance in a power system model, a power 
system modeler with no visibility to model configuration 
changes may attribute a shift in average wind output  
like this to climate change. 

The second issue with using operational model output  
is, as noted in Section 3, data assimilation in operational 
models is optimized to starting model integration at the 
earliest possible moment so that the forecast is timely, 
rather than to producing the best possible initial condition. 
Thus, operational model output is generally inferior to 
output from the same NWP configuration performed 
retrospectively utilizing all available data to produce the 
best initial condition (as, for example, in reanalysis).

Another consideration when determining dataset length 
is that the longer the dataset, the more computational 
resources are needed to create it, and subsequently  
refresh it (see Attribute 6, future-proofed).

Recommendation

Datasets produced as weather inputs to system planning 
models should extend back to at least 1990 and should 
use a consistent methodology throughout. Ideally, data-
sets should go back as far as possible, but documentation 
should be clear about the increased uncertainty in earlier 
years, especially prior to 1978. Longer datasets also  
require more computational resources, and if trade-offs 
need to be made between producing data prior to 1990 
and other attributes like resolution, future-proofing,  
and continuous extension, then limiting the historical 
duration is preferred.

Datasets aimed at power system modeling users should 
be extended in an ongoing fashion using the same con-
sistent methodology. Continuous extension is essential 
and is far more important than extending the record 

back many decades. This will ensure that the latest gridded 
data are always available for power system modeling  
and to compare against new observations (particularly at  
renewable resource sites) that can be used to validate the 
model performance. Continuous extension of the dataset 
will also allow any trends in climate to be observed and 
will provide accurate, easily accessible weather informa-
tion to analyze outages and future extreme events.

ATTRIBUTE 3: Coincident and Physically   
Consistent Across Weather Variables

Given the increasingly weather-correlated behavior  
of supply and demand, time series variables must be  
coincident in time to maintain correlations between  
related phenomena that impact supply, demand, and  

Given the increasingly weather-correlated  
behavior of supply and demand, time series 
variables must be coincident in time to   
maintain correlations between related   
phenomena that impact supply, demand,  
and infrastructure risks.

infrastructure risks. Assuming that the instruments used 
are reasonably accurate, observational data achieve this; 
an observation taken with one observing platform will be 
consistent with another taken at the same time. However, 
as has been noted, there is an insufficient density of  
observational data to meet power system modeling needs, 
so data must be synthesized with models and the output 
variables must be physically consistent. It is vital to  
realize that if different weather variables used as inputs 
for power system modeling are sourced from different 
meteorological models, or if the models are not physics-
based, it is unlikely that the time-coincident data will  
be physically consistent even if the inputs to the meteo-
rological models are the same consistent set of weather 
observations. The inconsistency can lead to combinations 
of weather variables that are not physically reasonable 
and combinations that have a different likelihood of  
occurrence in the synthesized time series than in reality. 

This data incongruency must be minimized because it 
will produce incorrect distributions of net load and may 
result in non-plausible outcomes. This in turn can lead, 
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for example, to sub-optimal portfolio optimizations  
in capacity expansion models or, in the case of tails in  
the distribution events, can produce resource adequacy 
findings that are inconsistent with reality. For instance,  
if irradiance at a location is over-estimated because  
it is estimated using an imperfect relationship with  
irradiance at another location, while another method 
over-estimates wind and temperature on cold cloudy 
days, the compounding of the errors will lead to an  
overly optimistic supply and demand balance that is  
considerably different from reality, even though the  
data are all coincident.

When the same physics-based model configuration is 
used for all required variables, these incongruencies will 
not occur, though of course the model data themselves 
can differ from reality as discussed at length in preceding 
sections. However, if the meteorological models are sta-
tistical in nature, or even if two different physics-based 
models are used to source different variables, inconsisten-
cies will occur. For statistical models the inconsistencies 
are likely to be profound. If two different physics-based 
models are used, the incongruency will be smaller  
but may still be significant, especially if output, while 
time-coincident, comes from models that have simulated 
different lengths of time from their starting point or  
have significantly different resolution. 

For instance, such an inconsistency can result from  
the common combination of data from the National  
Renewable Energy Laboratory (NREL) Wind Integration 
National Dataset (WIND) Toolkit with the NREL  
National Solar Radiation Database (NSRDB). The 
WIND Toolkit data come from a model that runs  
multi-day simulations. That is, they begin with an initial 
condition and then the model predicts several days’ 
worth of data. Meanwhile, the NSRDB data are created 
using a different physical model (the Physical Solar 
Model) that processes new satellite data every hour  
with prediction of future times. Although the large- 
scale weather pattern present in the simulations used  
to produce the WIND Toolkit is nudged back toward 
observations throughout the prediction period,30 it is 
possible for local-scale wind (and cloud) structures that 
the model develops in response to topography to become 

inconsistent with the cloud fields in NSRDB. This  
incongruency is probably nowhere near as serious as  
that which could arise from using different statistical 
models; however, no literature could be found by the 
ESIG project team that explores its magnitude. Since 
these two sources of data are frequently used together  
by power system modelers, the impact on the balance  
of supply and demand should be investigated if the  
datasets are to continue to be used together. This   
serves as a cautionary example of how even apparently 
coincident datasets that are commonly used together 
might not be physically consistent.

Recommendation

Observations or physics-based models, as opposed to 
statistical models, should be used wherever possible. 
When combinations of observations and one or more 
physics-based models are used, even though the times 
are coincident, some validation must be performed  
to ensure that the resultant combinations of variables 
produce physically reasonable outcomes and that the  
differences between these outcomes and those seen  
in reality are understood and quantified.

30 See “Deriving Downscaled Regional Datasets” in Section 2.

Observations or physics-based models, as  
opposed to statistical models, should be used 
wherever possible. When combinations of  
observations and one or more physics-based 
models are used, even though the times are  
coincident, some validation must be performed.

ATTRIBUTE 4: Validated with Uncertainty   
Quantified

Output data produced by any type of model, even if the 
model inputs are well-quality-controlled observations, 
must be robustly validated and the uncertainty must be 
quantified. The data should not be expected to perfectly 
match actual observations, but the degree to which they 
do not needs to be known for each variable of interest—
in the case of power system modeling, primarily wind, 
irradiance, and temperature—and as a function of  
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location, elevation, time of day, and time of year. In  
addition, it is important to pay particular attention to  
errors and biases that occur in weather regimes where  
the combination of moderate to high load and low wind 
and/or solar resource produces high net loads. If these 
scenarios coincide in a systematic fashion with signifi-
cant errors or biases in the modeled variables contributing 
to supply and demand, then this must be considered 
when stating confidence in the study results that use  
the weather inputs. The issue should then become part  
of a feedback process to improve the weather inputs  
either through post-processing or improvement of  
the underlying model.

Aside from validating the data and quantifying the pos-
sible magnitude of errors, if using NWP, it is worthwhile 
to create ensemble datasets. Here, the same initial data 
are passed through different models or the same model 
with different configurations, or slightly perturbed ver-
sions of the initial data are run through the same model 
(or some combination of the two). Doing this produces 
multiple potential realizations of the atmospheric state, 
forming an envelope of “truth.” Even where ground truth 
observations are not available for validation, the spread  
of the data within the different ensembles provides a 
measure of the uncertainty of the model data and can 
also be utilized downstream to run several instances  
of a power system analysis and examine the spread  
of outcomes.

Recommendation

Datasets produced for the purposes of power system 
analysis should include validation as a core part of  
the project to create them. This validation should pay 
particular attention to high-risk scenarios, for example, 

Dataset validation should pay particular   
attention to high-risk scenarios, such as  
weather regimes yielding resource adequacy 
concerns. While a dataset that accurately  
predicts annual capacity factors but not outlier 
events may be appropriate for a solar or wind 
plant developer, it is insufficient for power  
system reliability analysis.

weather regimes yielding resource adequacy concerns, 
where biases and errors could lead to incorrect conclusions. 
For example, a resource adequacy study is less concerned 
about the accuracy of average annual capacity factor of 
wind and solar resources, and more concerned about the 
accuracy—and associated probabilities—of sustained 

low-wind and low-solar periods. While a dataset that 
accurately predicts annual capacity factors but not outlier 
events may be appropriate for a solar or wind plant  
developer, it is insufficient for power system reliability 
analysis. In addition, new model datasets should use  
ensemble techniques to produce more than one estimate 
of weather inputs so that sensitivity of the power system 
models to weather inputs can be evaluated.

ATTRIBUTE 5: Documented in Detail  
and Transparently

Documentation of weather datasets used as inputs  
for power system studies is critical. It must be detailed 
and cover the items identified below. It should also  
transparently highlight the strengths and weaknesses  
of the methodology employed and provide guidance  
regarding how weaknesses may impact power system 
modeling efforts.

Recommendations

Documentation should include:

• Everything needed for an independent entity to  
recreate the data, including model configuration and 
input data sources. This also allows outside entities  
to test and critique the methodologies used.
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• Validation results and measures of uncertainty,  
including ongoing validation as the dataset is   
extended.

• An accessible tutorial that educates non-meteorologist 
users in how the data were produced. The tutorial 
should help users understand the differences they 
should expect between the dataset and the actual truth 
that could theoretically be measured if a microscale 
observing network was possible. It should make it 
clear that any gridded dataset will be imperfect and 
describe the dataset’s limitations and possible flaws.

• A clear description of the format of the dataset so  
that the necessary information can easily be parsed  
by end users.

• Descriptions of each variable provided along with  
advice about the known issues regarding the modeling 
of each variable that might be relevant to power system 
modeling. For example, for data that have been  
produced by regional downscaling using an NWP 
model, during cold periods with strong surface  
inversions the inversions tend to be eroded faster than 
in reality, resulting in time series data of temperature, 
wind speed, and low-lying cloud/fog (and thus  
irradiance) that progressively drift away from reality 
until the model initial condition is refreshed. This  
will obviously impact estimates of wind and solar  
generation and load that are derived from the data.

budget assigned—to update the entire database at the 
point where improved science and methods can produce 
a materially more useful dataset. For example, the output 
from the existing method could be compared to that  
of the very latest methods each year for a sample of the 
dataset. When output from a test run shows 10 percent 
improvement of core metrics, the entire dataset would  
be recreated using the latest methods.

ATTRIBUTE 7: Publicly Available, Easily   
Accessible, and Standardized

To move toward the next generation of power system 
modeling techniques, quality weather inputs are essential. 
As we have seen, producing such datasets, while possible, 
is no small task. The data volume will also be very large. 
Therefore, those datasets that are produced should be 
broadly available, easy to access, and provided in a  
standardized manner.

Recommendations

• Create a data standard for weather inputs. The standard 
would define the format of the data and indicate which 
data are mandatory and which are optional. It will also 
put the data into three categories:

– Data that will be routinely used by power system 
modelers. This should include everything that  
is needed, but no more, in order to minimize  
complexity and data volume. This will largely be 
fields like wind, temperature, relative humidity on 
geometric height levels above ground level, and 
two-dimensional fields like precipitation (amount 
and phase), and surface solar irradiance.

– Data that may be needed for more in-depth  
analysis of the power system as a function of  
meteorological conditions likely to be of interest  
to those doing a deeper dive. This will be a more 
complete set of meteorological variables available 
on pressure levels and/or the native NWP model 
vertical coordinate. The recommendations for  
Attribute 1 provide a possible list for a technical 
review committee to consider as a starting point.

– All other output deemed worth keeping relative  
to the cost of archiving it.

Plans should be made—and budget assigned—
to update the entire database at the point 
where improved science and methods can  
produce a materially more useful dataset.

ATTRIBUTE 6: Future-Proofed

Plans should be made at the beginning of any project 
producing power system planning weather inputs to 
make sure that, within reason, it continues to represent 
the state of the art.

Recommendation

Aside from continuously extending any dataset produced 
for power system modeling, plans should be made—and 
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Need for a Dedicated Team to Provide  
Curation and Advice

In the transition to a weather-driven electricity system, 
meteorological data are crucial, and the production and 
validation of datasets for use in power system modeling 
is complex and expensive—though many orders of  
magnitude less costly than the components of the power 
system being analyzed or the value that quality data will 
provide. Further, while the goal is to make weather input 
data as easy to use as possible, the data will sometimes 
contain significant differences relative to actual conditions, 
and understanding the nature of these differences is a 
specialized task.

For these reasons, and because there will be a need  
for technical and logistical management of processes to 
continuously update and periodically improve datasets, it 
is recommended that a dedicated team curate the weather 
dataset or datasets produced for use in the public domain. 
The team would manage data distribution, educational 
outreach, and general advice on data use; provide limited 
advice to specific users (while users requiring extensive 
assistance would be put in touch with a network of  
experts); collect user feedback and evaluate requests for 
changes and additions; perform validation and quality 
control; and flag issues associated with use of the data 
that could affect the conclusions drawn from power  
system modeling efforts that use the data. The team 
would also monitor the availability of other non-public 
data in the sphere and provide information to users  
as available.

The curation team could provide a certification service 
that evaluates how public weather input data are utilized 
for important decision-making and provide a seal of  
approval.

Comparison of Requirements and   
Currently Available Data

Here we introduce the most pertinent data currently 
available for power system analysis and score them 
against the seven required attributes outlined above.  
Table 2 (p. 76), summarizes some of the most useful 
available datasets, including some that have recently been 
introduced or are currently in development, and indicates 
where they do and do not meet the required attributes. 

Using the United States as the area of interest, if  
we apply the criteria from earlier in this section to the 
available datasets listed in Table 2, then most of the  
datasets are eliminated, because the complex topography 
from the Rocky Mountains westward and the Appalachian 
Mountains eastward requires geographical spacing of  
4 km or less to represent many of the phenomena driving 
renewable resources. As is detailed below, the longer, 
more frequently updated reanalysis datasets like ERA5 
(with 30 km grid spacing) are nowhere close to providing 
the required spatial resolution, and observations are far 
too sparse.

If we apply the seven criteria to the available 
datasets listed in Table 2, most of the datasets 
are eliminated, because the complex topography 
from the Rocky Mountains westward and the 
Appalachian Mountains eastward requires  
geographical spacing of 4 km or less to   
represent many of the phenomena driving  
renewable resources.

The datasets that remain are the NREL WIND Toolkit, 
the NREL NSRDB, and the operational forecast archive 
of the National Oceanic and Atmospheric Administration’s 
(NOAA’s) High-Resolution Rapid Refresh (HRRR) 
model. Aside from there being limited options, Table 2 
shows that the useful datasets do not completely meet 
the other required attributes for power system modeling 
weather inputs. Only NSRDB is longer than a decade 
and regularly updated. It is unclear how well any of the 
datasets represent the renewable generation output in 
different locations or how well they capture the variability, 
because detailed, systematic validations against actual 
wind and solar generation output have not been   
performed. A critical need is to produce updates at  
regular intervals of one year or less to continuously  
extend the dataset using the exact same methodology, 
and only NSRDB meets this. 

Regular updating, in addition to providing data to  
model the most recent (and thus, often the most relevant) 
periods, meets another need: to provide time series data 
that can capture the evolving signature of climate change. 
This may not be a critical need today, but the research 
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TA B L E  2

Summary of Current Power System Modeling Weather Input Data Sources
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MERRA-2a ~60 km 60 min
1980–

present
Yes Yes/No Yes No Probably Basic Global

ERA5b ~30 km 60 min
1940–

present
Yes Yes/No Yes Some Yes Good Global

HRRRc 3 km 15 min
2014–

present
Yes Yes/No Yes/No No Unideal Basic U.S.

WIND  
Toolkitd 2 km 5 min

2007–
2014

No Yes/Yes Yes Yes No Basic Various

WTK-LEDe 2 km/4 
km

5 min
3 year/ 
20 year

No Yes/Yes Yes Not yet Not yet No
Unknown, dataset 
not yet available

Various

NSRDBf 4 km/ 
60 km

30 min
1998–

present
Yes Yes/No

Solar 
only

Yes Yes Basic Most of globe

CERRAg

11 
km/5.5 

km
60 min

1980–
present

No/Yes No solar Yes Possibly Basic Europe

CONUS404h 4 km
60 min/ 
15 min 

(precip)

1980–
2020

No
Unknown/ 
Probably

Yes
Not the 

intended 
use

Continental 
U.S.

BARRAi 12 km/ 
1.5 km

60 min
1990–
2019

No
Yes/ 

Probably
Yes

Fee- 
based

Australia/ 
New Zealand

Public 
Observing 
Networksj

Non-
uniform, 
variable 
density

1 hr or 
less

Variable Yes Yes/No Mostly

Varies. 
Not for 
power 

systems

Varies Usually
Usually 

easy
Varies Global

Renewable 
Energy  
Project  
Datak

Non-
uniform, 
variable 
density

Usually 
minutes

Variable  
but 

rarely 
more 

than 10 
years

Varies
Yes/ 

Usually
Yes Usually

Varies, 
but 

usually 
poor

Varies
Usually 

poor
Usually 

none
Very limited

Proprietary 
Statistically 
Derived VRE 
Shapesl

Non-
uniform, 
variable 
density

Usually 
hourly

Variable. 
Rarely 
reliable 

long 
records.

Varies
Usually 

incomplete
No Partial

See 
note

No None Very limited

Summary of the most applicable datasets globally that are (or can be) used to provide weather inputs for power system analysis 
tasks, especially for providing estimate of site-level generation, and concurrent weather-driven load and generation outage risks. 
The degree to which the needs of each column heading are met is estimated with color coding. See documentation for each  
dataset for all details.

Source: Energy Systems Integration Group.

■■  Fully Met  ■■  Close to Being Met    ■■  Partially Met   ■■  Met in a Very Limited Way   ■■  Not Met at All   ■  Not Enough Info. for Determination

See the figure footnotes on the following page.

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://rapidrefresh.noaa.gov/hrrr/
https://www.nrel.gov/grid/wind-toolkit.html
https://www.nrel.gov/grid/wind-toolkit.html
https://nsrdb.nrel.gov/
https://climate.copernicus.eu/copernicus-regional-reanalysis-europe-cerra
https://www.usgs.gov/data/four-kilometer-long-term-regional-hydroclimate-reanalysis-over-conterminous-united-states
http://www.bom.gov.au/research/projects/reanalysis/
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Table 2 Footnotes 

a MERRA-2. The resolution of MERRA-2 (Modern-Era Retrospective Analysis for Research and Applications) is typically insufficient for weather 
input use in power system analysis.

b ECMWF (European Center for Medium-Range Weather Forecasting) Reanalysis v5. ERA5 has insufficient resolution to diagnose regional or local weather,  
yet it is widely used for power system analysis.

c High-Resolution Rapid Refresh (HRRR). The HRRR is an operational model and therefore configured to balance accuracy with speed. It undergoes regular 
configuration updates, so model skill is changing in time. Occasionally, major updates may occur that can create step changes in model biases.

d Wind Integration National Dataset Toolkit. The years 2007 through 2013 cover the U.S., and 2014 uses a different configuration that includes Mexico  
and Canada.

e WTK-LED (WIND (Wind Integration National Dataset) Toolkit Long-term Ensemble Dataset) is still in production, and there is little current documentation. 
There are three years at 2 km, and 20 years at 4 km that are downscaled to 2 km with the machine learning GAN (generative adversarial network) approach. 
In addition, one year of ensemble data is being produced to aid in quantifying uncertainty.

f NSRDB (National Solar Radiation Database). Irradiance resolution is 4 km. Other variables are interpolated from MERRA-2 data using an  
unvalidated method. These data are generally not appropriate as weather inputs to power system analysis, forcing NSRDB to be used in combination  
with other datasets, which creates consistency issues.

g CERRA (Copernicus Regional Reanalysis for Europe). Ensembles at 11 km. Does not include all weather variables.

h CONUS404. A 4 km, long-term regional hydroclimate reanalysis over the conterminous United States (CONUS), 1979–2020. Developed by the U.S. Geological 
Survey to assess hydrological climatology, but may be useful to repurpose for power system analysis.

i  Bureau’s Atmospheric High-Resolution Regional Reanalysis for Australia. A 12 km reanalysis with 1.5 km domains over four cities in Australia.

j Many public observing networks exist with variable density, quality, and applicability.

k Observed data from renewable energy facilities is of course applicable to variable renewable energy, but quality varies from site to site and is typically  
proprietary. Data across the upper portion of the rotor sweep is often not measured.

l Often used proprietary data. The same shape is often assumed across broad areas. Validations are not rigorous, and methodologies are usually not fully 
documented in a transparent way. Output usually includes only a single weather variable.

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://rapidrefresh.noaa.gov/hrrr/
https://www.nrel.gov/grid/wind-toolkit.html
https://nsrdb.nrel.gov/
https://climate.copernicus.eu/copernicus-regional-reanalysis-europe-cerra
https://www.usgs.gov/data/four-kilometer-long-term-regional-hydroclimate-reanalysis-over-conterminous-united-states
http://www.bom.gov.au/research/projects/reanalysis/
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required to extract climate signals will be complex and 
challenging and will require many years of consistent 
data created for the purpose. Lastly, elements of the  
usable datasets must be combined to provide data to  
represent both wind and solar generation reasonably  
well. Hence, there is some risk of physical inconsistency 
between weather variable fields. While this effect is 
probably reasonably small, it should be investigated  
if the sector plans to continue to utilize data from  
different sources.

ERA5 and Other Global Reanalysis Datasets

There are several global reanalysis datasets. (See Section 
3, “Weather Inputs Needed for System Planning,” for  
a detailed description of this type of dataset.) The most 
well known are the National Centers for Environmental 
Prediction/National Center for Atmospheric Research 
(NCEP/NCAR) Reanalysis,31 the National Aeronautics 
and Space Administration’s Modern-Era Retrospective 
Analysis for Research and Applications (MERRA), 
MERRA-2 (an update of MERRA),32 the Interim  
ECMWF Atmospheric Re-Analysis of the Global  
Climate (ERA-Interim),33 and the fifth-generation  
ECMWF Atmospheric Re-Analysis of the Global  
Climate (ERA5).34 These datasets provide an estimate  
of all the main variables that define the state of the  
atmosphere, as well as the state of the interface with the 
land and ocean surface on easy-to-use three-dimensional 
grids for every time interval in the dataset. Data include 
latitudinal and longitudinal wind components, temperature, 
humidity, liquid and frozen water content, and geo- 
potential height in three dimensions; two-dimensional 
fields like irradiance, accumulated precipitation and 
snowfall, soil and water temperature, and model topography 
and land use; and often many other derived fields. The 
datasets span multiple decades and have a temporal  
resolution between one and six hours. Each is or was  
regularly extended with the latest weather data until 
deprecated by a subsequent improved dataset designed  
to take its place. 

The focus here is on ERA5 (which was preceded by 
ERA-Interim), since for the purpose of weather inputs 
to the energy sector, it is far superior to the others.  
The NCEP/NCAR Reanalysis was one of the earliest 
available global reanalysis datasets and is still being  
regularly extended, but its resolution is far too coarse  
for the needs of power system modeling. MERRA-2, 
which replaced MERRA, has a finer resolution than  
either MERRA or the NCAR/NCEP reanalysis, but  
is still much too coarse to use in any capacity for power 
system modeling without downscaling first. (Note that 
MERRA-2 provides the meteorological companion  
dataset to NSRDB, discussed below.)

ERA5 is a global reanalysis dataset on which important 
meteorological fields defining the state of the atmosphere 
are represented on a 0.25°x0.25° grid, with 137 terrain-
following vertical levels. (Section 3 includes an explana-
tion of terrain-following coordinates.) The data that are 
typically served to users are interpolated onto a regular 
Cartesian grid with regular 30 km spacing. The reanalysis 
is performed using the ECMWF Integrated Forecasting 
System (IFS) model and its 4D-Var data assimilation 
system, which are widely considered best in class.  
The output has been broadly validated and is found  
to produce meteorological fields that are representative 
of observations, especially in simple terrain. The archive 
extends back several decades and is regularly updated. 
ECMWF commits significant resources to quality- 
controlling the output. The modeling system is clearly 
documented, and the data are easy to access for any  
region of interest on the planet. For these reasons, ERA5 
is an attractive dataset that is widely used, including  
for power system planning studies.

However, while ERA5 is unquestionably the best  
global reanalysis dataset currently available, it is not a 
panacea. Average validation statistics are very good, but 
the horizontal grid spacing of 30 km is insufficient to  
produce detailed meteorological fields present in complex 

31 https://www.ncei.noaa.gov/products/weather-climate-models/reanalysis-1-2.

32 https://gmao.gsfc.nasa.gov/reanalysis/MERRA/ and https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/.

33 https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-interim.

34 The landing page for ERA5 information is https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5. From here there are links to detailed  
documentation. Documentation for the other reanalysis datasets can also be found online.

https://www.ncei.noaa.gov/products/weather-climate-models/reanalysis-1-2
https://gmao.gsfc.nasa.gov/reanalysis/MERRA/
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-interim
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
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35 As seen in unpublished client work performed by Justin Sharp of Sharply Focused that contrasts reanalysis datasets with observations.

topography, fields that are crucial to resolve for estimating 
renewable generation in these areas. As an example, a 
validation study including complex topography in southern 
Europe showed that variables like wind speed can exhibit 
average correlation coefficients in the range of 0.5 when 
compared to observations (Molina, Gutiérrez, and Sán-
chez, 2021). Poor correlations between the reanalysis 
data and observations are also found for other important 
variables such as temperature and precipitation when the 
combination of weather and terrain produces phenomena 
like valley cold pools, and large deviations from reality 
have been observed west of the Rocky Mountains in  
the United States.35 

The main way in which ERA5 fails to meet the criteria 
for a long-term historical dataset for use in power system 
planning is its horizontal grid spacing (see Table 2, p. 76). 
Other, less serious limitations are that (a) the output is 
only available at hourly intervals, and (b) easily accessible 
data for near-surface levels are only available at 10 m  
and 100 m. Because of ERA5’s low resolution, using  
it to estimate renewable generation for power system 
modeling can produce large errors, especially in regions 
of complex terrain, which are often good locations for 
renewables development. (See “The Impact of Model 
Resolution” on p. 25.) However, because ERA5 is such a 
good dataset overall, it is possible that it might be used 
as the input to downscaling methodologies, and it is 
valuable in regions with simple topography.

The High-Resolution Rapid Refresh   
Model (HRRR)

The HRRR is an operational limited-area model that 
runs on a rapid update cycle and covers the continental 
United States. New observational data are assimilated 

every hour, followed by a short forecast run (currently 
either 18 or 48 hours ahead, depending on the time of 
day), meaning that a new analysis is available every hour. 
Because the model is high resolution (currently 3 km 
grid spacing) and tethered to reality with frequent data 
assimilation, it offers many of the benefits of reanalysis 
but with high resolution. However, the fact that it is an 
operational model is a major drawback. To get the model 
refreshed with new observations and update the short-
term forecast, strict data cut-off times need to be enforced. 
(See the discussion of data assimilation in Section 2, 
“Meteorological Data Fundamentals for Power System 
Planning.”) Thus, many fewer observations will make it 
into the analysis than in the case of, for example, ERA5.

While ERA5 is unquestionably the best global 
reanalysis dataset currently available, and  
average validation statistics are very good, the 
horizontal grid spacing of 30 km is insufficient 
to produce detailed meteorological fields  
present in complex topography.

The HRRR is high resolution and tethered  
to reality with frequency data assimilation; 
however, the fact that it is an operational  
model is a major drawback, and the data  
are not future-proofed.

In addition, the HRRR model configuration and code 
are updated quite frequently, which might seem like a 
good thing, but it introduces changing biases into the 
time series data. At some point a major model change  
is likely to happen, such as an increase in horizontal  
resolution or a change in dynamical core, and this will 
create a data discontinuity. Lastly, the model has only 
been running since 2014, so the time series is too  
short for use in power system modeling. 

Despite these flaws, the HRRR may be a good choice  
to provide weather inputs for some modeling exercises  
in which it is not essential to have a long time history  
to cover all possible conditions. Possible examples are  
renewable integration studies within the continental  
U.S. that aim to study periods since 2014, capacity  
expansion studies, and perhaps production cost modeling 
studies focused on reserve and flexibility needs. However, 
resource adequacy studies will require longer and more 
consistent time series data than are provided by this  
dataset. 
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The WIND Toolkit

The NREL WIND Toolkit dataset was produced  
specifically to provide weather inputs to wind integration 
studies.36 The team that created it went to significant 
lengths to tune the model configuration so that wind 
speed autocorrelation and spatial covariance accurately 
represented the scales being examined. They also chose  
a 2 km grid spacing to ensure that most weather features 
important to wind generation were resolved. Data are 
output at 5-minute intervals to provide the granularity 
needed to resolve wind ramping events. The WIND 
Toolkit is unique in that a companion dataset containing 
“forecasts” was also created. For each hour in the WIND 
Toolkit output, there is an accompanying set of values 
that represents what forecasts of the weather at that  
hour would be for different lead times that correspond  
to power systems’ operational gate closure times. The 
weather forecasts were then used to produce power  
forecasts at thousands of possible wind generation sites. 
The forecasts were tuned to have a similar skill to state-
of-the-art forecasts. Of course, forecasting has improved 
since 2014, so the skill of these forecasts is lower than  
is possible today.

Toolkit at the locations around 284 real and hypothetical 
wind plants were used to calculate wind power at each 
plant. The “plants” were designed to represent either  
existing wind generation facilities or places throughout 
the country that were reasonable possibilities for future 
wind plants. Among other comparisons, the aggregate 
capacity factor for existing plants in the Midcontinent 
Independent System Operator (MISO) and Electric  
Reliability Council of Texas (ERCOT) territories  
was compared to power data derived from the WIND 
Toolkit. The simulated aggregate output was found to  
be reasonably consistent with reality, but again, there 
were significant differences in daily output shape and  
in energy volume. Of most concern was a tendency to 
over-predict the wind speed, yielding capacity factors that 
were 5 to 10 percentage points too high when aggregated 
across broad U.S. regions like ERCOT and MISO. 

This finding points to how critical it is not only to  
produce an easy-to-use dataset, but also to ensure that  
it is validated in detail. While it would be desirable  
for the WIND Toolkit data not to exhibit this bias, at 
least the bias is documented, which is not the case for 
many other datasets. It is also important to make sure 
that inaccuracies are communicated. While the over- 
prediction has been noted by several users of the dataset, 
it is perhaps not as widely broadcast as it should be. The 
WIND Toolkit data contain significant errors during 
some critical weather regimes. For instance, Sharp (2022) 
found that during periods of low wind resource across 
the entire western U.S., the WIND Toolkit often greatly 
over-predicted the wind speed in the Pacific Northwest, 
yielding generation estimates for the large amount of 
wind in the Bonneville Power Administration balancing 
area that were much too high. These errors are due  
to NWP models often struggling to represent stable 
boundary layers and mixing momentum to the surface 
from aloft too quickly during cold stable weather.

The output of the original WIND Toolkit covers the  
period from 2007 through 2013. An additional year, 
2014, was added later but used a different model set up, 
and the 2014 data have different biases. Thus, the dataset 
clearly does not meet the multi-decadal requirement, the 
requirement for regular extension, or the requirement  
for consistent model configuration.

36 https://www.nrel.gov/grid/wind-toolkit.html.

The skill of the WIND Toolkit’s model is good 
relative to what can be expected from NWP,  
but the differences are large enough to matter 
in power systems applications. The most  
significant issue is an overall high bias in the 
wind speed.

In one validation study the dataset was compared to 
wind observations located on tall meteorological towers 
at 13 sites around the U.S. (Draxl et al., 2015). The com-
parisons were reasonably good but by no means perfect. 
The daily shapes of the wind averages showed some  
differences between the model and observational data,  
as did the wind speed distributions. The skill of the model 
is good relative to that expected from NWP, but the  
differences are large enough to matter in power system 
applications. The most significant issue is an overall  
high bias in the wind speed. In another validation (King,  
Clifton, and Hodge, 2014), wind speeds from the WIND 
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The objective when the WIND Toolkit was produced 
was to provide the best wind inputs to integration  
models, and the NWP model used was tuned to do this. 
At the time it was produced, solar predictions from the 
model used were not particularly good. Therefore, when 
using the WIND Toolkit data, a companion needs to  
be found for solar data. Usually the NSRDB is used, but 
this brings up some of the issues mentioned above for 
Attribute 3 (coincident and physically consistent across 
weather variables).

using updated models. This will feature three years of  
2 km grid spacing simulations over the continental U.S. 
and Alaska with 5-minute output, and 20 years over 
North America at an hourly output. The longer time 
series will then be downscaled using the GAN machine 
learning approach described in Section 3 to ultimately 
provide 20 years of 2 km output with 5-minute temporal 
resolution. In addition, an ensemble of model runs was 
generated for 2018, and this is used to provide uncertainty 
quantification. A limited validation has been performed 
that compares the WTK-LED wind speeds to lidar  
observations taken at a wind plant in flat terrain in  
Oklahoma and two lidars offshore from the East Coast 
(Pronk et al., 2022). The validation also compares these 
observations to the ERA5 dataset in order to assess the 
value of the WTK-LED relative to existing data. The 
validation indicates that WTK-LED-predicted wind 
speed profiles show a limited negative bias offshore  
(~ -0.5 m/s) and a slight positive bias at the land-based 
site (~ +0.5 m/s). ERA5 shows a significant negative  
bias at both locations (~ -1 m/s), with a larger bias  
at the land-based site, but ERA5 outperformed the 
WTK-LED in terms of the centered root-mean-square 
error (cRMSE) and correlation coefficient, for both  
the land-based and offshore cases, in all atmospheric  
stability conditions.

Work on the WTK-LED is ongoing, so there are  
few published results at this time. It will be particularly 
interesting to see how well data from the GAN down-
scaling approach compare to corresponding raw NWP 
output and how both compare to actual field observations. 
If the project is successful and the validation shows  
accurate results, the new dataset would meet most, 
though not all, of the criteria for power system weather 
inputs. The main issues would be a lack of ongoing  
extension, lack of future-proofing, and lack of dedicated 

Despite its flaws, the WIND Toolkit is still one  
of the best available datasets for providing 
wind inputs to power systems models and is 
widely used. However, the flaws highlight the 
importance of validating data before use, and 
of taking the findings into account so as not  
to draw erroneous conclusions.

Despite its flaws, the WIND Toolkit is still one of  
the best available datasets for providing wind inputs  
to power systems models and is widely used. However, 
the flaws highlight the importance of validating data  
before use, and of taking the findings into account so  
as not to draw erroneous conclusions. In addition, its 
limited length means that users will often seek to extend 
the dataset using statistical methods. This needs to be 
done with great care (see Section 6, “Guidance for  
Using Existing Weather Inputs,” for details).

The WIND Toolkit is now rather antiquated, and NWP 
modeling has advanced considerably since the Toolkit 
was produced because of general advancements and  
targeted programs like the Wind Forecast Improvement 
Projects and the Solar Forecast Improvement Projects 
funded by the U.S. Department of Energy. Subsequent 
projects have extended the geographical scope of the 
WIND Toolkit data to Canada and Mexico as well as 
several Asian locations using a similar methodology. 
New projects are now underway to create the WIND 
Toolkit Long-term Ensemble Dataset (WTK-LED)  
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37 https://nsrdb.nrel.gov/data-sets/us-data.

38 See Sengupta et al. (2015a) for a description of the Physical Satellite Model.

39 https://nsrdb.nrel.gov/data-sets/international-data.

40 There is some improvement that observations collected from more advanced instruments can bring to data collected before the new instrument  
deployment. The new data help to define overall temporal and spatial variability as well as local-scale features that are anchored to terrain. These may   
be used by machine learning algorithms to “enhance” the prior data.

curation. In addition, the project is designed explicitly  
to produce wind data, so it is unclear whether it will  
produce useful concurrent solar irradiance data or 
whether a different dataset will need to be used for  
this, potentially yielding physical consistency issues.

The National Solar Radiation Database 
(NSRDB)

NREL’s NSRDB is a database of solar irradiance that 
covers the period 1998–2021 (as of July 2023).37 It is  
extended annually to cover the previous year. The data 
currently use the Physical Satellite Model (PSM) to  
derive historical global horizontal, direct normal, and 
diffuse horizontal irradiance.38 At the time of writing, 
the data for the U.S. are available for 4 km x 4 km grid 
cells for the period 1998–2021 and for 2 km x 2 km grid 
cells for the period 2019–2021. Output is available at 
30-minute intervals throughout the period of record and 
at 5-minute intervals from 2019 onward. In addition to 
the United States, the NSRDB has been extended for 
several other countries.39 The geographical and temporal 
resolution of these extensions varies depending on the 
available satellite data in each area.

methodologies and improved inputs. This is the type of 
future-proofing that is needed for weather inputs to be 
most useful to power system models. The one drawback 
of updates to NSRDB is that new instruments have only 
limited value for periods prior to their deployment.40 
However, to ensure a consistent record, when the entire 
record cannot be refactored as a result of an update,  
the old version is still provided. For instance, 2 km data 
have been available since 2019, but 4 km data are still 
provided as well so that they are consistent with the  
rest of the dataset.

The NSRDB data have been validated against surface 
observations (Buster et al., 2022; Habte, Sengupta, and 
Lopez, 2017; Sengupta et al., 2015b), but there is a lack 
of publicly available, high-quality surface solar radiation 
measurements in the U.S. Seven, nine, and 20 sites  
were compared in the 2015, 2017, and 2022 studies,  
respectively. In addition, comparisons of point measure-
ments at surface stations to the pixels in the NSRDB  
is not really an apples-to-apples comparison. Long- 
term biases at the seven stations compared in the valida-
tion study were relatively small, so there is reasonable 
confidence that the overall values derived with the method 
are relatively accurate for monthly and annual averages. 
However, correlation between hourly and sub-hourly  
observations and NSRDB data is poor. All three reports 
show significant biases with overestimates on clear days 
and underestimates on cloudy days, as well as MAE/
RMSE metrics that can be higher than 40% overall, and 
higher still on cloudy days. This level of error might have 
a significant impact in power system modeling. As with 
the discussion of the WIND Toolkit above, it is very 
positive that these types of validations have been carried 
out, but it is unclear whether users of the data are aware 
how large the errors might nonetheless be.  

The NSRDB also contains time series data of wind  
and temperature and some other commonly used  
meteorological fields on the same 4 km (2 km since 
2018) grid. These data are provided to aid in calculations 

In addition to being regularly extended,   
the NSRDB data are periodically refreshed 
throughout the entire period of record to  
incorporate new methodologies and improved 
inputs. This is the type of future-proofing  
that is needed for weather inputs to be most 
useful to power system models.

Research and development to further improve the data 
accuracy and usefulness is ongoing. Satellite observations 
are also improving as more advanced instruments are  
deployed. Thus, in addition to being regularly extended, 
the NSRDB data are periodically refreshed through- 
out the entire period of record to incorporate new  
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of temperature and wind impacts on solar generation. 
These fields are interpolated from data in the MERRA-2 
reanalysis, which has a grid spacing of about 60 km; the 
same issues raised in the discussion of MERRA-2 data 
apply to them. The interpolation can add confusion  
because the resampled data appear to have higher reso-
lution than they really do. An inverse-distance weighting 
is used to cast the 60 km wind data to a 4 km grid, while 
temperature is linearly interpolated and then adjusted  
to the altitude of the high-resolution grid using a lapse 
rate correction that typically will not represent real  
atmospheric conditions. Because of the coarse source  
resolution and non-physics-based interpolation, it is  
recommended that non-solar NSRDB data fields not  
be used as inputs for calculations of weather impacts  
on loads or wind generation in power system modeling.

NSRDB appears to meet many of the criteria described 
above for use in power system modeling. There are  
decades of observations, the resolution is acceptable, it  
is continuously extended, and it has been validated and  
is documented. However, only the irradiance components 
have an appropriate resolution for power system model-
ing, and validation reports raise questions as to the  
applicability of the irradiance data, too. Careful validation 
of power estimates against observed output is required.

Public Weather Observations

There is a huge number of public weather stations  
located throughout the world, and when they provide  
the right data, with the right attributes for use in power 
system modeling, they should always be preferred,  
as observations are always better than model data.  
Observed temperature data are often available for long 
enough periods, at high enough density for use in deter-
mining the weather impact on load. However, weather 
observations are typically much denser and higher  
quality in urban areas; in less densely populated areas 
where wind and solar generators tend to be located,  
observations are sparse. In addition, publicly available 
weather data are not designed to capture the information 
needed to estimate variable renewable generation.  
For instance, public stations very rarely measure solar  
irradiance, and the wind is measured at a height of 10 m 
and not within the rotor plane. This is a significant issue 
because 10 m wind and hub-height wind follow opposite 
diurnal profiles, with 10 m wind peaking during the  

afternoon and hub-height wind peaking at night. There 
are some quasi-public high-density observation networks, 
such as the New York State Mesonet (Brotzge et al., 
2020), which do have pyranometers that measure GHI 
at all 126 standard sites statewide and higher-quality  
radiation flux sensors at 17 enhanced sites, but gradual 
degradation, and occasional recalibration or outright  
replacement, of some of the radiation sensors can lead  
to changing and/or inconsistent observation error  
characteristics across a network. Particularly for solar  
radiation observations, users must be aware of instru-
ment quality and calibration issues that can affect  
measurement uncertainty.

Public weather stations should always be 
preferred when they provide the right data, 
with the right attributes for use in power  
system modeling, as observations are always 
better than model data. Temperature data  
are often available for long enough periods,  
at high enough density for use in determining 
the weather impact on load. However,   
observations are sparse in less densely   
populated areas where wind and solar   
generators tend to be located.

Proprietary Time Series

As wind and solar capacity has increased, private  
consultancies that perform tasks such as resource  
adequacy studies using power system models have  
had to begin to consider the impact of wind and solar  
generation. As should be abundantly clear by now, doing 
so is no simple task, especially since the data needed  
are not readily available. To their credit, these companies 
have tried to make do with what data they have and  
have developed some innovative approaches to estimate 
renewables generation. However, because filling wind 
and solar data voids is complex, it behooves downstream 
consumers of these data or of products derived from 
them to ask questions. Consumers of the data need to 
ensure that the methodology is scientifically defensible 
and that any limitations and their impacts on power  
system study outcomes are well understood. See Table 2 
(p. 76). Ideally, methods should be peer reviewed.
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S ECT I O N  5

Project Description for Producing  
Robust Weather Inputs Data

All existing datasets fall short of what is   
needed for power system modeling, as they  
either are too low in resolution, do not have  
a long enough time history, are antiquated,  
or do not capture all necessary weather   
variables in a physically consistent fashion.

The discussion in Section 4 indicates that there  
are several datasets available that meet some of  
the requirements of the power system modeling 

sector for weather inputs, but all of them fall short  
in one area or another, largely because they either are  
too low in resolution, do not have a long enough time 
history, are antiquated, or do not capture all necessary 
weather variables in a physically consistent fashion. 

There is an urgent need to develop one or more datasets 
that can become the standard for the power/electricity 
sector to use now and moving forward for the foreseeable 
future. In addition to activities like renewable energy  
integration studies, resource adequacy assessments,  
capacity expansion modeling, and integrated resource 
planning that use power system models that must  

represent the increasing weather dependence of the  
electric power system, other areas would also greatly  
benefit from such a dataset, including renewable resource 
assessments and renewable resource performance analyses. 
In addition, if properly designed and archived, a com-
prehensive high-resolution dataset would be extremely 
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useful for foundational research work to examine the  
relationships between load and renewable resources, and 
broader weather patterns and climate signals, as well as 
for establishing possible climate trends. A dataset with 
the attributes described in Section 4 would also be a  
leap forward in the state-of-the-science for describing 
the condition of the atmosphere at high resolution and 
thus would be of great interest to many other sectors  
that are weather data stakeholders.

There can be no reliable energy transition without  
broadly available, consistent, weather datasets for power 
system studies that meet the seven criteria outlined in 
this report (see Table 1, p. 61). Given public policies that 
promote or require increases in renewable resources, this 
dataset should  be considered a public good—one that  
is government funded, publicly available, and routinely 
maintained.

While what is being proposed is not trivial, the computer 
power needed is considerably less than that currently used 
by the National Oceanic and Atmospheric Administration 
(NOAA) for its operational forecasting efforts, and it 
is inexpensive compared to its value: providing accurate 
information guiding the deployment of trillions of  
dollars of renewable assets, specifically, where to locate 
and how to interconnect them in order to minimize  
cost and maximize reliability.

The current gaps and limitations in weather inputs for 
power system modeling could be addressed through the 
creation of a comprehensive, public dataset meeting all 

the requirements discussed in Section 4. The objective 
would be to produce time series data that can be used  
to realistically assess weather impacts on supply and  
demand in a high-renewables system.

The dataset would have the following attributes:   
(a) sufficient spatial resolution; (b) sufficient temporal  
resolution; (c) including the necessary variables in space 
and time; (d) covering multiple decades with consistent 
methodology and being extended on an ongoing basis; 
(e) coincident and coherent across all weather variables; 
(f ) validated with uncertainty quantified; (g) documented 
transparently and in detail, including limitations and  
a guide for usage; (h) future-proofed; and (i) publicly 
available and easily accessible. It would be ideal for an 
entity with sufficient resources to have responsibility  
for curating the data, performing ongoing validation, 
flagging issues, and advising on the dataset’s use.

The project would likely use either a high-resolution  
reanalysis or reforecast method, or a hybrid of high- and 
moderate-resolution solutions with one of these methods 
plus downscaling using machine learning methods.  
It would proceed in two stages: first, a technical review 
committee would refine the dataset requirements, assess 
methods for creating a sample dataset, and preside over  
a request for proposals to create one or more sample  
datasets that are thoroughly evaluated to assess accuracy 
expectations for the second phase; second, a high-fidelity 
archive would be built using the selected methodology, 
and the process of ongoing extension would be   
implemented.
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41 See https://psl.noaa.gov/renewable_energy/wfip/ and https://psl.noaa.gov/renewable_energy/wfip2/. 

STAGE 1: Validate and Refine Requirements 
and Confirm Need and Fitness

The initial stage of building an ideal weather dataset 
would convene a technical review committee composed of:

• Expert power system stakeholders

• One or two experienced energy meteorologists who 
are familiar with the big picture of how power system 
modeling is performed for both hypothetical studies 
and actual utility or system planning

• Experienced NWP modelers whose experience  
covers high-resolution modeling and data assimilation

• Experts in NWP post-processing methodologies  
including bias correction and downscaling techniques 
employing machine learning techniques

The technical review committee would perform the  
following steps:

1. Vet and refine the dataset requirements  
described in Section 4.

2. Determine possible methods to create the  
sample datasets:

a. Select a period for which data will be produced. 
This may be a period of a year or a selection of dates 
intentionally chosen to cover different regimes that 
are important to system modeling. A recent year 
and/or a period that overlaps with that of past  
observational campaigns like the jointly sponsored 
NOAA/U.S. Department of Energy Wind Forecast 
Improvement Projects should be used in order to 
aid validation.41 Whatever period is chosen should 
be one where as many quality observations as  
possible can be obtained to validate the fields that 
impact wind and solar generation across a broad 
range of geographies and weather regimes.

b. Select candidate methods for dataset production. 
Ideally, candidate methods would be selected in  
an open and transparent competitive process. For 
example, a request for proposals could be broadcast, 
allowing interested parties to submit proposals  
describing the methodology they believe will best 
fulfill the requirements. Submissions would then be 
reviewed, and the most promising ones invited to 

produce sample datasets. This would ensure the 
maximum likelihood that candidate methods would 
include the latest innovations to maximize accuracy 
and provide a range of options and price points. 
Another avenue could be a cooperative agreement 
with NOAA to produce a high-resolution reanaly-
sis dataset based on the current High-Resolution 
Rapid Refresh Model (HRRR) configuration. This 
would have the advantage of largely mimicking the 
current operational set-up and would be highly 
synergistic and useful to other sectors. Incorporat-
ing both approaches would provide the optimal  
information with which to determine the source(s) 
that provide the most effective and efficient pathway 
to producing the full historical and ongoing 
dataset(s).

c. Using three to seven candidate methods, produce 
sample datasets.

3. Compare the candidate methods and determine  
their value relative to using continuously extended  
datasets that exist today. Datasets that could be 
compared to the sample dataset include the Modern-
Era Retrospective Analysis for Research and Applications 
version 2 (MERRA-2) and ERA5 reanalysis datasets 
and the NOAA/High-Resolution Rapid Refresh 
(HRRR) operational forecast archive. National Solar 
Radiation Database (NSRDB) solar irradiance data 
could also be compared.

https://psl.noaa.gov/renewable_energy/wfip/
https://psl.noaa.gov/renewable_energy/wfip2/
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a. Obtain as much observational validation data  
as possible, with a focus on meteorological obser- 
vations relevant to power system modeling. If  
possible, use industry outreach to obtain the  
most relevant observation data.

b. Rigorously validate the sample datasets and the 
control datasets against observations.

c. If quality power-output data can be obtained from 
a representative set of renewable resource facilities, 
create a post-processing model and train it to  
predict power based on the candidate and control 
model output to determine whether the new  
datasets better predict the overall characteristics  
of generation than the controls. This is important, 
because while it is certain that low-resolution data-
sets like MERRA-2 and ERA5 will not accurately 
predict the wind features present in complex terrain, 
it is still important to determine how accurately 
low-resolution output might predict power by  
statistical means (e.g., building a relationship  
between site generation and model wind speed/ 
irradiance). It is unlikely that they will more  
accurately predict power output, but the experience 
of operational wind power forecasters has been that 
statistical models relating NWP output to project 
power can be as valuable as improved wind speed 
predictions. If such statistical processing of low-
resolution model data can yield power predictions 
on par with those from high-resolution models, it 
may be worth spending effort looking at ways to 
utilize existing data.  
 
Of course, using a method like this would not be 
possible where no generation history exists, and  
it is likely that we need the large modeling effort 
that is being proposed. However, since most new 
renewable generation is now built near currently 
operational plants, if such a method works for  
existing sites using existing low-resolution, easy- 
to-obtain data from datasets like ERA5, and if  
operational output data can be obtained from  
sufficient numbers of existing projects, then  
developing methods of estimating generation  
at locations with no history using the existing  
reanalysis and generation history from existing 
nearby plants would be a much simpler, cheaper, 
and quicker solution.

4. Determine whether the candidate datasets add value 
over the controls. Assuming they do, select the method 
with the best combination of cost and accuracy and 
move to Stage 2.

STAGE 2: Produce Historical Archive   
and Ongoing Process

Once the value of a dedicated process to produce a  
high-fidelity archive is established, the next step is to 
build the archive and operationalize the process of  
ongoing extension using the method selected in Stage 1. 
The main decisions at this point would be how far the 
archive will go back and when operational extension will 
be performed (for instance, are data for January 5, 2023, 
produced on January 10, 2023; are data for January 2023 
produced in March 2023; or are data for all of 2023  
produced sometime in 2024). The rest of the process of 
developing the data should be relatively straightforward 
and automated.

At this stage, curation of the data will be key to   
its usability and to understanding its limitations and  
uncertainty. The following issues would need to be 
thought through:

• Data access: Data volumes will be very large (many 
petabytes), and users will need a way to efficiently  
access the data they need.

• Observation network: A broad observation network 
will need to be built out, both through building new 
observational assets and by obtaining meteorological 
data from existing renewable plants. To properly  
validate high-resolution output, more observations will 
be needed. These observations will also be valuable in 
data assimilation where numerical weather prediction 
NWP-based solutions are deployed, and in post- 
processing to reduce systematic errors.

– Regions where wind and solar plants exist or  
may be built should be targeted, as these are often 
regions with no currently available public measure-
ments. Where there are public data, these rarely 
measure wind at the elevations required, and almost 
never record solar radiation. To obtain the required 
density of observations will require educating  
renewable resource project owners on the value of 
(confidentially) sharing observations to improve 
ground truth data and getting the renewable energy 
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sector to understand that improved meteorological 
datasets are in the interest of the entire sector.

– Interaction with system operators and regulators 
may also be needed to help secure meteorological 
data.

– In a limited number of cases, new observing net-
works may need to be deployed, either temporarily 
or permanently, to assess the quality of the data  
being produced in important data voids.

• Ongoing validation:

– The data are only valuable if there is confidence  
in their accuracy. While no dataset will ever be  
perfect, understanding and communicating the 
flaws can prevent incorrect downstream conclusions 
from being drawn, as well as lead to methods to 
improve it.

– Low-frequency, high-impact events should be 
identified and differences between available obser-
vations and the model data for these events analyzed 
in detail to determine how well tail events are  
captured. Sufficient human resources should  
be deployed so that high-impact events can be  

documented in detail to produce a library of such 
events for future stress-testing of the power system.

• User education: Providing insight into how and  
why the data might differ from ground truth will help 
to ensure that they are applied correctly. This will  
also reduce the misuse of existing weather datasets, 
because users will become more informed about the 
nuances and limitations of physical model–based  
datasets and learn best practices for their use. There 
should also be outreach efforts to promote the use  
of the data and report back on findings when they  
are used in important research.

• Documentation of alternative data sources: It 
may be helpful for the project to produce a central 
knowledge repository describing other energy meteo-
rology datasets and their uses and limitations. This 
would be valuable for users and would provide insight 
into ways that data in any dataset can be improved by 
being refreshed. It is possible that the project could be 
further expanded to become a repository for the actual 
data from other efforts as well, allowing it to become  
a one stop shop and promoting ongoing innovation.
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S ECT I O N  6

Guidance for Using Existing  
Weather Inputs

42 For definitions of terms that some readers may be unfamiliar with, please see the glossary at the end of the report.

Datasets available today for power system   
modeling have significant shortcomings. At the 
time of writing, the National Renewable Energy 

Laboratory’s (NREL) Wind Integration National  
Dataset (WIND) Toolkit best fits the overall needs for 
public weather datasets in the United States, especially 
for any studies within complex terrain, and these data  
are often augmented with data from the National Solar 
Radiation Database (NSRDB) for estimating solar  
generation. 

For studies in simple, relatively flat terrain, terrain, ERA5 
(the fifth-generation European Center for Medium-
Range Weather Forecasting (ECMWF) Atmospheric 
Re-Analysis of the Global Climate) can be considered 
because its longer history and regular updates may  
outweigh the issue of low resolution in these regions.  
The ESIG project team creating this report also notes 
that several new datasets are in the works, including  
extensions to the WIND Toolkit, but none meet all of 
the required criteria for power system modeling. Table 3 
(p. 90) provides a summary of how well the combination 
of the WIND Toolkit and NSRDB datasets, and the  
stand-alone ERA5 dataset, currently meet power system 

modeling needs and highlights the gaps and weaknesses 
of each. Table 2, on p. 76 in Section 4, “An Ideal Weather  
Inputs Database for Power System Planning, and  
Comparison to Currently Available Data,” provides a 
more comprehensive table covering many other datasets.

Despite the significant shortcomings in available data, 
the work of power system planners and modelers must 
move forward. Therefore, in this section we describe the 
most important gaps, propose ways to fill or work around 
them, and highlight the resulting uncertainties that  
system planners need to be aware of.42

Unless it is known that meteorological data come from 
observations, a dataset may have significant deviations 
from reality—and these deviations can be complex in  
nature. It is best to always consult a meteorologist when 
applying weather inputs to power system modeling  
efforts if the consequences of the analysis have any  
gravity. The importance of consulting a meteorologist  
becomes even greater when datasets are extended, to  
ensure that the extension methodology used allows the 
objectives of the study to be accurately met. Maintaining 
the consistency through time and space of the weather 
variables is vital but difficult, especially when using  
statistical bootstrapping methods. 

Conversely, it is important for meteorologists who  
are extending the existing weather data inputs for power 
system modeling to consult with power system experts  
in order to fully comprehend how the data will be used 
prior to executing intensive computer simulations to pro-
duce these datasets. This will ensure that methodologies 
will produce results that are consistent with the sector’s 
needs.

Despite the shortcomings in available data, the 
work of power system planners and modelers 
must move forward. This section describes the 
most important gaps, proposes ways to fill or 
work around them, and highlights the resulting 
uncertainties that system planners need to  
be aware of.
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TA B L E  3

Summary of Best Available Public Datasets to Estimate Site-Level Generation  
at All Current and Future Wind and Solar Assets in All Regions of the United States

Attribute

WIND Toolkit/NSRDB Combination ERA5

For Wind/Load For Solar Wind/Solar/Load

Has required temporal resolutiona 5-min produced 5-min since 2019 Hourly

Has required spatial resolution 2 km
4 km; 2 km  
since 2019

30 km

Includes multiple heights above  
the surface

N/A

Available for several decades 8 yearsb Since 1998 Yes

Has regular updates Nothing formal Annual Daily (7-day lag)

Is future-proofed Ad hoc Yes Yes

Is long enough to detect climate 
signals

Unlikely Possibly Yes

Models are adequately validated

Accuracy assessed, including for  
risk periods

Against tall  
meteorology towers

Limited Limited

Variability assessed, against reality Limited Limited Several studies

Assessed power system modeling  
applicability?

Designed for this No studies found No studies found

Provides companion “forecasts”c Produced No, but possible No

Is based on consistent input  
observations and/or models

Yes, except 2014 Yes Yes  
(single modeling 

system)Physical consistency between  
wind/solar

No; impact should be investigated

Well documented and easy to use

Limitations are clearly specified

This summarizes key attributes of the three best available public datasets that can provide a reasonable 
estimate of site-level generation at all current and future wind and solar assets in all regions of the United 
States. The WIND Toolkit and NSRDB are typically used in tandem, with the WIND Toolkit providing data  
for estimating wind generation (and possibly loads) and NSRDB being used for estimating solar generation, 
because neither provides acceptable accuracy for both variables. This introduces physical consistency  
issues, as described in Box 4 on p. 48).

a  All datasets have hourly data. Five-minute data were produced for the WIND Toolkit, but NREL reports that they are  
no longer available.

b  Data from the years 2007 through 2013 use a different configuration compared to 2014.  An extension is being produced  
for the whole dataset.

c  For definitions of “forecast” used in this report, see Box 1, p. 11. NREL reports that the forecast dataset is no longer available  
but other sources may have an archive. 

Notes: WIND = Wind Integration National Dataset; NSRDB = National Solar Radiation Database; ERA5 = Fifth-Generation  
ECMWF Atmospheric Re-Analysis of the Global Climate. Climate; N/A = not applicable.

Source: Energy Systems Integration Group.

■■  Fully Met   ■■  Close to Being Met    ■■  Partially Met   ■■  Met in a Very Limited Way   ■■  Not Met at All
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Various approaches can be used to supplement existing 
data and to perform stress tests of the power system  
for extreme weather. A few examples are:

• Using data sources such as surface measurements  
in addition to the synthetic datasets

• Extending existing data sources to represent higher 
levels of renewable resources

• Extrapolating existing datasets to include more  
years of consistent data

• Extending existing datasets to evaluate the impact  
of extreme weather

Below, the project team urges caution if using new  
or ad hoc methods and describes why. Then it discusses 
promising practices for applying any meteorological  
datasets to power system models and provides one  
example for each from recent work. These examples  
help light the way for additional evolution of   
approaches to filling the existing data gaps.

The Need for Caution If Considering  
the Use of New or Ad Hoc Methods

Some recently developed methods may be unproven  
or invalid. Currently, many power system planners are 
developing heuristics or bootstrapping approaches to  
fill the gaps and limitations in current weather datasets. 
Typically, these bootstrapping methods will take a short 
period (several years) of available, modeled wind and 
solar data and extrapolate that to long multi-decadal  
datasets using correlations in daily temperature. While 
these methods are well intentioned (and often necessary, 
given the unavailability of data), they have limitations. 
Power system planners will want to use caution if utilizing 
new or ad hoc methods, as some recently developed 
methods may lead to invalid modeling results.

The emergence of unproven or invalid methods is not 
new. As early as 2012, perhaps earlier, it was recognized 
that new methods for bootstrapping or otherwise using 
statistical approaches to develop wind/solar profiles was, 
in some cases, becoming increasingly untethered from 
the way that weather actually works. For example:

 For integration studies, it is critical to use time- 
synchronized wind and load data to ensure that  
underlying weather drivers are properly accounted  

for in the statistical analyses and operational simulations. 
Unfortunately, the existing datasets are becoming 
somewhat stale. This is leading to the development  
of questionable ad hoc methods that attempt to create 
high-quality, consistent wind datasets to be used for 
integration studies. Unfortunately, such methods will 
likely compromise integration analysis and intercon-
nection planning until more current datasets can be 
developed and kept up to date (Milligan et al., 2012).

Even when using a complete dataset from a 
reputable source, it is bad practice to assume 
that if a dataset covers the geographical region 
of interest at a spatial and temporal fidelity 
necessary for power system modeling, the  
data provide appropriate accuracy for the  
task at hand.

Even when using a complete dataset from a reputable 
source, it is bad practice to assume that if a dataset  
covers the geographical region of interest at a spatial and 
temporal fidelity necessary for power system modeling, 
the data provide appropriate accuracy for the task at 
hand. The temporal length and spatial breadth of many 
gridded datasets, as well as their ease of use, can seem 
compelling, and users often treat these grids as black 
boxes representative of reality. However, while the data 
are usually anchored to some atmospheric observations, 
most of them are modeled; in addition, many meteoro-
logical phenomena, especially those driving wind resource, 
are scale-dependent and may not be resolved by the 
modeling method employed, or for all weather regimes. 
It is therefore crucial to understand how datasets used  
as meteorological inputs to power system modeling 
might deviate from reality.

Typically, even when appropriate meteorological inputs 
are available, they do not cover the right time window or 
a long enough period. This leads to efforts to extrapolate 
and extend the data that are often questionable. Examples 
of ad hoc approaches include, but are not limited to:

• Scaling wind or solar input linearly to represent more 
renewable capacity or, more generally, making linearity 
assumptions about weather data
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• Mixing and matching data from different time  
periods or different datasets

• Creating synthetic bootstrap datasets without   
considering the concurrency and consistency   
comments above

• Assuming that locations near to one another   
experience the same meteorology

• Assuming linear (or even polynomial) linkages  
between different weather variables and using these  
to extrapolate the time series of one weather variable 
from another. Weather variables are highly non-linear 
and rarely, if ever, interact in linear ways. For instance, 
solar and wind generation does have a relationship 
with temperature, but temperature alone cannot be 
used to predict the wind or solar energy that will  
be generated.

– Assuming linear linkages is problematic because 
relationships between temperature and other 
weather variables are non-linear, complex, and 
change with time and weather regime. For example, 
for a single location, a period with very cold tem-
peratures could be accompanied by high wind  
on some occasions and low wind on others.

– For wind and solar resources coincident with 
temperatures driving load, shorter datasets with 
known coincidence and consistency between  
variables are better than long datasets with some  
or all the data being synthetically created with  
untested relationships.

• Using statistical and probabilistic simulation methods 
for producing renewable resource time series that  
are untested or unproven to be valid.

Examples of Practices for Consideration 
When Applying or Extending Existing  
Datasets to Evaluate Weather Risk 

There are, however, approaches to applying and extend-
ing existing datasets that can yield reasonable/usable  
results, if done carefully and with the necessary expertise 
and communication among parties. Meteorological  
datasets that provide high spatial fidelity, while anchored 
by some atmospheric observations, are almost always  
derived in part by models. If a model is simple and  
easy to understand by a non-meteorologist, it likely is  
not very accurate. Conversely, better models are very 
complicated, but this can create an assumption that  
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the complexity implies accuracy. If the complexity created 
a near-perfect representation of weather conditions in-
fluencing the power system, then the data could be used 
with confidence as a proxy for observations. However, 
this is not the case, because, while atmospheric modeling 
is tremendously effective and valuable, it is simply not 
possible for it to produce near-perfect results in all cir-
cumstances due to limitations in observations, computer 
power, and approximations in model representation of 
the atmosphere (see Section 2, “Meteorological Data 
Fundamentals for Power System Planning,” for details).

When using any weather data for power system model-
ing (even if the dataset is already considered complete 
enough for use), it should be standard practice to consult 
a meteorologist who is well versed in the attributes of 
those data. The teams that produce these datasets can  
be excellent sources of information, but typically they do 
not have the budget or staff to provide case-by-case help. 
It is even more important to get advice from a qualified 
meteorologist if one wishes to extend an existing dataset. 
Carrying this out requires experts with knowledge of the 
observations and model(s) used to produce the dataset 
and of the phenomena that predominantly affect the  
renewable resources in the system being evaluated. 

For example, if one is using a dataset produced by a  
numerical weather prediction (NWP) model to estimate 
wind generation, then a meteorologist with experience 
interpreting NWP wind output (ideally for the purpose 
of wind energy prediction) in the region of the study 
should be consulted. Similarly, for the National Solar 

Radiation Database (NSRDB), extending the dataset 
requires a meteorologist with some knowledge of the 
method used to derive surface irradiances from satellite 
data and of the nuances of the data validation program. 
If the meteorology expert is educated by the power  
system modeler about the conditions that cause stress  
to the system being evaluated, they can provide specific 
insights into the uncertainties in the data being used  
that can ensure that risk is being correctly quantified. 
They will also be able to suggest methods to extend  
datasets (and the caveats that result from doing so)  
or propose alternative methods to more completely  
evaluate the potential areas of weather-driven risk.

Representing Higher Levels of Renewable  
Resources with Existing Data Sources   
That Do Not Completely Overlap

A recent report from GridLab examines alternative 
pathways that California could take to reach its clean  
energy targets by 2030 (Stenclik, Welch, and Sreedharan, 
2022). To represent a future build-out of more wind and 
solar generation in the power system model representation 
of the generation portfolio, additional wind and solar  
capacity was added to supplement the existing plants’  
capacities. This optimization approach that determined 
where to put the capacity used the NREL WIND  
Toolkit and NSRDB data as the weather input, and 
modeled as many years as possible in the PLEXOS 
model to gain a better understanding of the potential  
future resource mixes through time.

The study team recognized that the datasets did not  
fully overlap and consulted a meteorologist to evaluate 
how the data limitations impacted the study and to sanity-
check methodologies that attempted to mitigate the  
limitations. Because there are 22 years of solar data and 
only 8 years of wind data, the study team applied the full 
22-year set of solar data to further examine its impact 
over a longer term. Wind data were used in a couple of 
different ways, recognizing the absence of the common 
weather driver for the years during which there were  
solar data but no wind data. One approach was to use the 
annual wind profile with the lowest wind output (2012) 
from the entire wind dataset. The study recognized  
this limitation, but determined that because California’s 
current and projected solar capacity is significantly higher 
than the wind capacity, having more years of solar data 

Meteorological experts should be consulted 
who are knowledgeable with the observations 
and model(s) used to produce the dataset and 
with the phenomena that predominantly affect 
the renewable resources in the system. If the 
meteorology expert is educated by the power 
systems modeler about the conditions that 
cause stress to the system being evaluated, 
they can provide specific insights into the  
uncertainties in the data being used that can 
ensure that risk is being correctly quantified.
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43 See https://www.eia.gov/electricity/data/eia860/.

44 The System Advisor Model is a free techno-economic software model that facilitates decision-making for people in the renewable energy industry.  
See https://sam.nrel.gov/. 

was more important than a shorter dataset with corre-
lated wind and solar. While this approach provides some 
insights, a better dataset would have allowed for greater 
insight and certainty on how the California grid would 
perform over a longer period of time.

The study also used the locations for all existing wind 
and solar plants from the U.S. Energy Information  
Administration (EIA) Form 860 database to develop 
generation profiles consistent for incumbent plants.43  
Because one of the study’s objectives was to assess the 
ability of California’s grid to tap into potentially available 
resource across the West, wind and solar generation was 
estimated for the entire United States portion of the 
Western Interconnection. Both the wind and solar data 
from the NSRDB and WIND Toolkit were input to  
the NREL System Advisor Model (SAM) to create the 
power profiles at each desired location.44 This resulted  
in multiple years of hourly, time-synchronized wind and 
solar power production data which the study authors  
say “is critical to understanding the multi-year variability 
of the wind and solar resources, the likelihood of multi-
day sustained low renewable resource production, and 
the characteristics of outlier events” (Stenclik, Welch, 
and Sreedharan, 2022, 18-19).

Once the process of determining the capacity expansion 
to a future renewable resources portfolio had been com-
pleted, a time series of estimated renewable generation 
for each plant in the expanded portfolio could be  
calculated for the eight years that had overlapping wind 
and solar data, and outlying days with low renewable 
generation identified at different levels of geographical 
aggregation.

Assessing the Quality of Power System   
Model Weather Inputs During Periods   
of System Stress

As a separate part of the study in the above example, 
days where renewable resource was particularly low  
relative to demand were investigated by the team  
meteorologist. It was found that some issues in the 
NWP representation of the renewable resource during 
these periods of system stress resulted in a substantial 

over-prediction of the available wind resource (Sharp, 
2022). In this case, the portfolio had enough dispatchable 
capacity to cover the difference between actual resource 
and model estimates, but this may not be the case for 
studies involving higher levels of renewables or more  
retirement of gas capacity. This illustrates the importance 
of having a subject matter expert evaluate power system 
modeling weather inputs.

Extrapolating Existing Data Sources  
to Longer Time Series

There is a range of current practices that attempt to  
fill the data void using bootstrapping methods, and some 
are better than others. Hart and Mileva (2022) provide 
an example of one of the better methodologies, which 
they used in a study that describes a weather-synchronized 
simulation approach to resource adequacy analysis.  
A combination of the Federal Energy Regulatory  
Commission (FERC) Form 714, NREL WIND Toolkit, 
NSRDB, EIA Forms, and Western Electricity Coordi-
nating Council (WECC) datasets were used to provide 
hourly time series data for load, wind, solar, thermal  
outage/derate, as well as lower-resolution hydro data. 
Concurrent weather data for several sites were obtained 
from the National Oceanic and Atmospheric Administration’s 
National Centers for Environmental Information 

https://www.eia.gov/electricity/data/eia860/
https://sam.nrel.gov/
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45 See Hart and Mileva (2022) Section 2.1.1 and Appendix B for more details.

46 See NERC (2014) pages 14-15 for why it is difficult to assemble a proper dataset to analyze high-impact, low-probability events. 

(NOAA/NCEI). The available data only overlapped 
across the period 2007–2014 and were extended to 
2007–2020, with extreme care taken to preserve the  
underlying weather drivers. The authors used weather 
binning methods in which the weather variables explain-
ing the hourly net load at key locations driving supply 
and demand were determined using principal component 
analysis of the hourly net load and used the principal 
components to divide days into different bins of weather 
modes. A Markov chain method was then used to  
randomly walk between weather bins in a fashion that 
was consistent with real daily weather transitions, and  
on each day Monte Carlo methods randomly selected 
hourly load, wind, solar, and thermal shapes from  
options within the same regime bin. This allowed  
them to greatly expand the potential system conditions 
with combinations that are plausible.45

Hart and Mileva also performed weather-synchronized 
simulations where weather data from available model 
time series were used to simulate coincident conditions 
for the overlapping period of wind, solar, load, thermal, 
and hydro data. They obtained results that were similar  
to the Monte Carlo analysis, though the loss-of-load  
expectation in the synchronized study was slightly higher. 
They found that the weather-synchronized simulation 
approach was superior to Monte Carlo because it  
“provides confidence that the findings reflect actual 
physical weather phenomena and all relevant spatial and 
temporal correlations” (Hart and Mileva, 2022, 14). 
Methods such as this are therefore promising, and they 
offer much more plausible results than “blind” Monte 
Carlo sampling (using only daily temperature correlations, 
for example) that may destroy the underlying weather 
drivers for wind, solar, demand, and hydro. However, this 
study also found that the principal component driving 
loss-of-load expectation on the Western Interconnection 
was still temperature. These results suggest that at current 
levels of wind and solar in the United States, it is possible 
to use the currently available data and some promising 
approaches to bootstrapping datasets that allow for  
reasonable optimizations in planning tasks like capacity 
expansion and reasonable estimates of resource adequacy; 
however, as renewable capacity increases, higher-quality, 
longer datasets will become essential. 

Extending Datasets to Examine Extreme 
Weather, High-Impact Low-Probability Impacts

There is increasing interest and urgency in capturing  
grid performance during extreme storms, one category  
of high-impact, low-probability events. The 2014 NERC 
Integration of Variable Generation Task Force (IVGTF) 
Task 1.6 report discusses the use of probabilistic modeling 
in power system applications, including to model high-
impact low-probability events (NERC, 2014).46 Because 
these events are relatively rare, we do not have sufficient 
data to really capture the probabilities involved. There is 
an increasing need for scenario analysis and stress testing 
to see how the grid can operate during these unusual 
events. This is discussed further in NERC (2014).

Two recent reports develop stress tests based on plausible 
potential events that may make it challenging for the grid 
to operate reliably. The first study, the California Pathways 
report, developed several such stress tests (Stenclik, 
Welch, and Sreedharan, 2022). These included early gas 
retirements in California, low hydro power availability, 
coal retirements in the Western Interconnection, limiting 
imports to the California grid, multi-year demand  
variability, combined stressors, and demand flexibility. 
Each of these stress cases was modeled with an eight-
year weather dataset, and with three alternative resource 
portfolios, resulting in 192 years of simulations, plus  
additional simulations across the 20-year demand data 
that yielded a total of 264 years of simulations.

Notably, each of these stress tests did not attempt to  
alter the wind/solar datasets to represent some type of 
extreme wind/solar performance, as doing so would have 
likely destroyed the common weather driver that links 
demand, wind, and solar generation. However, the result-
ing stress tests account for the common weather driver 
across the many modeling inputs, providing confidence 
that no artificial or implausible weather patterns were 
assumed in the analysis. Additionally, the eight-year  
dataset captured actual storms across the interconnection. 
Of course, a longer dataset would further increase  
confidence in the results of the stress tests and could  
reveal other potential events of concern.
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A second study, carried out by GE Energy on behalf of 
the Natural Resources Defense Council, developed and 
modeled two stress tests for the Eastern Interconnection 
to evaluate the benefit of eliminating key transmission 
bottlenecks during extreme weather (GE Energy  
Consulting, 2022). The first stressor modeled was a  
heat wave in 2035, the basis of which was the three-day 
summer heat wave of August 2018. The second stressor 
was a winter polar vortex, also in 2035. This event was 
based upon the 2014 polar vortex that saw demand about 
40 percent higher than normal at the same time that 
generation outages increased because of the cold weather. 
The demand profile was increased to simulate the higher 
load during the storm, but the overall pattern of demand 
remained the same. The report showed that interregional 
transmission would have significant value by reducing  
or preventing electricity shortages during the extreme 
weather that was evaluated. Similar to the California 
Pathways report, the Natural Resources Defense Council 
report would have benefited from a more complete  
and robust dataset that contains more actual extreme 
weather events.

As discussed above, it is essential that data inputs used  
for power system modeling that include  renewable  
resources ensure underlying consistency in the weather 
drivers. Additionally, a more comprehensive validation 
program should be carried out, especially now that much 
more wind and solar are expected to connect to the grid 

in coming years. With an annually updated wind/solar 
database, such validation could be extremely informative 
and more comprehensive because more renewable plants 
will be online.

Power system modelers should resist the urge to tamper 
with weather/wind/solar data unless they are working 
closely with a qualified meteorologist. 

Some ad hoc methods could potentially be valid, but are 
unproven, while others are not plausible. Although actual 
wind/solar production data may be useful in some types 
of studies, without complementing these datasets with 
data that can reasonably represent future renewable  
resources, the usefulness of these actual data for resource 
adequacy studies may be somewhat limited until a more 
robust, annually updated, dataset can be developed.  
Mixing renewable resources and demand data from  
different years will destroy the underlying weather  
linkage and will result in invalid modeling outputs.  
Even though the results may “seem reasonable,” there  
is no reason to assume that they are reasonable. Above 
all, remember the aphorism: garbage in = garbage out.

Do’s and Don’ts

The following list of do’s and don’ts when using existing 
weather datasets in power system modeling studies are 
adapted from Stenclik (2022).
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Do consult a meteorologist; don’t go it alone. 

Power system planning, particularly resource adequacy 
analysis, sits at the intersection of engineering, economics, 
and meteorology. Too often, power system engineers and 
planners develop assumptions about weather without 
consulting with a meteorologist or atmospheric scientist 
familiar with the use of weather data in power system 
modeling. The truth is that cross-disciplinary analysis is 
required, and power system engineers need to exercise 
caution when bootstrapping datasets, especially for  
outlier events like Winter Storm Elliott in North  
America in late December 2022.

Do model stressors to all resource types.  
Don’t assume that extreme weather impacts 
only renewables. 

Winter Storm Uri in February 2021 and Winter Storm 
Elliott in December 2022 showed that all resource types 
are affected by the weather. Natural gas is susceptible  
to fuel scarcity, wind and solar are dependent on atmo-
spheric conditions, coal piles freeze, and all equipment 
sees increased outages during extreme conditions. All  
too often, however, system planners assume that only 
variable renewable resources are affected by the weather. 
This is emphatically not the case. The impact of weather 
on all resources needs to be modeled across a wide range 
of conditions to ensure that sufficient resources are  
available to meet load even during conditions likely  
to cause common mode failures.

Do stress-test systems against as many future 
weather realizations as possible. Don’t make 
investment decisions using single weather 
years. 

Power systems need to be stress-tested against potential 
high-impact, low-probability events, for both the current 
and future power grids. But planners need to proceed 
with caution. These events may not fit neatly in the  
conventional planning reserve margin and the one-day-
in-ten-years loss-of-load expectation framework that our 
grids are planned to accommodate. These events should 
not just drive investment in more resources, but rather 
investment in a more resilient grid generally. Stress- 
testing, in conjunction with typical probabilistic   
analysis, is needed.

Don’t just evaluate a doomsday planning  
scenario. Do use data reflecting likely   
correlations among stressors. 

When trying to prepare for worst-case scenarios, it can 
be tempting to develop an infeasible “what if ” situation. 
Rather than utilize robust atmospheric and meteorological 
analysis (see the first item in this list), power system 
planners often develop a doomsday scenario where  
everything goes wrong simultaneously. Load spikes, all 
wind and solar generation drops to zero, and transmis-
sion interconnections with neighbors are unavailable.  
But while there are certainly correlations across these 
stressors, it is important to base analysis on likely or 
potential weather conditions rather than synthetic  
stress events. 

Do consider weather in neighboring grids. 
Don’t assume each power system is an island.

While the North American power grid is made of a 
smorgasbord of independent system operators, regional 
transmission organizations, utilities, and various balanc-
ing authorities, transmission links most of them across 
the Eastern and Western Interconnections. During  
extreme weather events, these transmission links can  
offer significant reliability benefits; however, many  
independent system operators, regional transmission  
organizations, and utilities plan for islanded conditions 
without support from neighboring balancing authorities. 
This leaves a lot of value on the table and makes inter-
regional transmission development difficult. Ongoing 
discussions at FERC and elsewhere are rightfully  
considering ways to improve these interconnections  
to help support reliability and resource adequacy. 

https://www.esig.energy/multi-value-transmission-planning-report/
https://www.esig.energy/multi-value-transmission-planning-report/
https://www.esig.energy/multi-value-transmission-planning-report/
https://www.ferc.gov/news-events/events/staff-led-workshop-establishing-interregional-transfer-capability-transmission
https://www.ferc.gov/news-events/events/staff-led-workshop-establishing-interregional-transfer-capability-transmission
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7

S ECT I O N  7

The Impact of a Changing Climate

Over the coming decades, power systems will  
continue to evolve as levels of storage, renewables, 
and other new technologies increase, conventional 

generators retire, and transmission and distribution  
systems are modified. At a regional scale, these changes 
will likely have a larger impact on bulk resource adequacy 
than climate change will (e.g., Bloomfield et al., 2021). 
As this report and others (e.g., Craig et al., 2022) have 
shown, it is critical to develop appropriate datasets to 
model this weather-induced variability and to enhance 
the capability of power system models to be able to  
ingest the multi-decadal datasets needed to model  
demand and renewable generation variability accurately. 

While climate science is unable to quantify the impacts 
of climate change on wind and solar resources with  
certainty at this point, it is advanced enough to begin  

to predict trends in temperature and, to some degree, 
precipitation. There is evidence that urbanization and  
climate change are already changing temperature  
distributions, and it is expected that future conditions 
will include increases in the average number of cooling 
degree days (thus increasing the use of air conditioning), 
increased extreme temperature excursions, changes in 
humidity during the cooling season, and changes in the 
length of hot spells. Changes in the nature of the cool 
season are also expected, with an overall decrease in  
heating degree days (leading to less need for space heat-
ing) combined with the possibility that extreme cold 
waves may become more likely and/or severe in some  
locations. Hotter summers and longer dry periods are 
also resulting in a rapid increase in wildfire frequency, 
intensity, and size, and these fires impact the   
transmission and distribution system.
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47 See https://www.forbes.com/sites/mariannelehnis/2022/12/29/2022-was-a-year-of-record-breaking-extreme-weather-events/?sh=5b13c338736b 
for examples from 2022.

But while it is unquestionable that the impacts of weather 
and climate on demand are changing, predominantly 
through increasing temperatures, the question of how 
wind and solar resources will change is more complex 
and requires significant engagement between the power 
sector and the climate science community. Because of 
this, and because the task of gathering appropriate data 
to model wind and solar generation is already immense, 
this report has not delved into the challenge of integrat-
ing climate projections into power system planning. 

However, climate change cannot be ignored. At smaller 
scales, climate change could have a more magnified  
impact, as demonstrated by public safety power shutoffs 
in the U.S. West. And we are already seeing an increase 
in the number and intensity of extreme weather events 
occurring due to climate change around the world47— 
extreme heat, heavy precipitation, and prolonged drought 
—and this will increase in the future. These extreme  
weather events impact the reliability and resilience of  
energy systems and change the envelope of uncertainty 
surrounding different possible weather-driven outcomes, 
and with it the likelihood of events that stress the system. 
Extreme events do not have to be “extreme” in the classical 
sense to pose risks to system operation. As more wind 
and solar are added to the resource mix, combinations  
of events, such as low winds and moderately cold  
temperatures, may strain the grid. In the future, weather 
that appears unremarkable to an individual (a low-wind, 
cloudy, moderately cold day) could be a high-impact 
stressed grid condition. 

Therefore, when using weather inputs for power system 
modeling that are developed based on past conditions, 
there is a need to contextualize the results with some 
consideration that the climate is changing. Some of this 
change will already be captured in long time series data 
(e.g., a comparison of the results from the 1980s with 
2010s), but the changes will not be representative of the 
future, especially for studies that extend over a longer  
period (say, 10 to 20 years in the future). The changing 
climate will impact all facets of the power system,  
motivating the need for better planning and operational 
strategies in anticipation of extreme events.

Multiple dimensions of resilience come into play  
when considering the impacts of climate change on 
power system operation. Consequences of a potentially 
disruptive event can be minimized by the system’s  
ability to: 

• Withstand the impact of a disruptive event (through 
advanced hardening, protection measures, or proactive 
decisions on revision of future technical standards)

• Respond to the conditions (through real-time  
operations such as generator redispatch and   
transmission switching)

• Recover quickly (through targeted restoration, getting 
repair crews in place, and replacement hardware)

Each of these dimensions requires an understanding  
of the impacts of expected weather and the ability to 
forecast it at an appropriate lead time. Characterizing  
the future landscape of extreme weather events is often 
done by looking at the past, for example, using multiple 
decades of reanalysis data to look at the most extreme 
event seen in a region. However, because of climate 
change, the past is now an insufficient representation  
of the range of future conditions. This is due to the  
non-stationarity of many of the meteorological drivers of 
power system behavior, such as near-surface temperature, 
precipitation, solar radiation, and wind speeds.

To understand these impacts, there is a need to use  
climate projections, which can inform our understanding 
of changes to the mean climate and vulnerabilities of 
power systems to extreme weather. This section provides 
an overview of ways that climate change will need to be 
considered when interpreting output from power system 

Extreme events do not have to be “extreme”  
in the classical sense to pose risks to system 
operation. In the future, weather that is  
considered unremarkable—such as a low-wind, 
cloudy, moderately cold day—may result in  
a high-impact stressed grid condition.

https://www.forbes.com/sites/mariannelehnis/2022/12/29/2022-was-a-year-of-record-breaking-extreme-weather-events/?sh=5b13c338736b
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models that are evaluating future conditions, and  
includes a brief discussion of how the current state of  
the science influences confidence in the importance  
and magnitude of different effects.

Ways in Which Climate Change Will   
Affect the Applicability of Historical Data 
and Modeling Outcomes

Here we focus on the response of climate models to  
increases in greenhouse gas emissions and how this may 
theoretically impact the electricity sector, and discuss the 
limitations of these climate models for power system 
modeling. 

The uncertainty in future climate projections arises from 
three distribution sources:

• The choice of climate data years used for the   
simulation (internal variability)

• The choice of climate model (model uncertainty)

• The choice of climate projection scenario   
(scenario uncertainty)

Climate scientists have spent significant time and  
resources to quantify the relative magnitude of these 
sources of uncertainty at different temporal and spatial 
scales (e.g., Hawkins and Sutton, 2008), and this can be 
useful for a discussion of the applicability of historical 
data. Despite the significant work done to date, the large 
uncertainty remaining for many atmospheric variables 
makes power system planners’ work complex, as it  
remains difficult to prepare electricity infrastructure to 
survive such events at an acceptable level of reliability.

Temperature

The climate science community has high confidence 
when it comes to the impact of climate change on  
variables like near-surface temperature. Global mean 
temperatures are increasing at a rate proportional to  
anthropogenic greenhouse gas emissions. Multiple  
decades ahead, the main uncertainty comes from the 
choice of climate projection scenarios (i.e., the extent  
to which policies and technological developments drive 
greenhouse gas reductions). There is an increase in the 
frequency of types of events most closely related to near-
surface temperatures, such as multi-day heat waves, hot 

days, and tropical nights (when temperatures do not drop 
below 20°C (68°F) during the night). These increasing 
temperatures will lead to changes in electricity demand, 
through reductions in demand for heating and increased 
demand for cooling, with changes in cooling outweighing 
changes in heating (Deroubaix et al., 2021; Bloomfield  
et al., 2021). Increased temperatures can also lead to a 
reduction in solar photovoltaic (PV) performance due  
to reduced panel efficiency (Feron et al., 2021). Other 
impacts of increasing temperatures include changing 
load profile shapes, reduced cooling water for traditional 
power plants, and reduced transmission capacity   
(Panteli and Mancarella, 2015).

Precipitation

Known thermodynamic responses of the atmosphere  
to climate change suggest that storms will become more 
intense due to increases in available precipitable water, 
although there is very large uncertainty in climate models 
and internal variability in the number and intensity of 
extreme storms. As air warms, its capacity to hold water 
increases (known as the Clausius-Clapeyron rate), and 
heavy rainfall events are expected to become more frequent. 
The warmer and moister atmosphere and oceans also 
suggests that the strongest hurricanes will become more 
intense, with more rainfall and possibly increasing size, 
which would affect new areas (Gensini, Ramseyer,  
and Mote, 2014). There is, however, very large model  
uncertainty and internal variability in the number  
and intensity of extreme storms and hurricanes. The 
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prevalence of severe weather events like extreme   
precipitation events and extreme winds (straight-line, 
hurricanes, and tornados) may all impact grid infrastruc-
ture. Snowpack and melt timing are impacted by climate 
change in a regionally specific manner, resulting in changes 
to the timing of hydro power availability and system 
constraints that can lead to oversupply and undersupply 
issues (Craig et al., 2018).

Climate change has also altered the historical pattern of 
droughts. Warmer, drier conditions result in the drying 
up of water sources such as lakes and rivers. Droughts are 
projected to become more frequent and longer and have 
more severe consequences, such as what is seen in the 
western United States. These droughts directly impact 
hydro power production and the availability of cooling 
water for thermal generation plants.

Wind Speed and Solar Irradiance

It is much more difficult to project changes in wind 
speed and solar irradiance distributions in time and 
space, as these are impacted very strongly by internal 
variability (see, for example, Bloomfield et al. (2021)  
for an example over Europe). Over the historical period 
there is some evidence in the scientific literature for 
global stilling—a reduction in the magnitude of global-
mean near-surface wind speeds—from the 1960s to 
2010s, which is thought to be due to dynamical changes 
in reductions in the pole-to-equator temperature gradi-
ent (another result of climate change, as the poles warm 
much more rapidly than the equator (Zeng et al., 2019)). 
However, the global-mean wind speeds have increased 
again since 2010, and this behavior can be tied to  
atmospheric variability.

The general response of surface solar irradiance is that 
there is an increase in cloudy days, which results in  

reduced solar PV output (Haupt et al., 2016). However, 
for both wind and solar power the day-to-day variability 
is much larger than the climate change signal. For now, 
the important thing is to include the day-to-day variability 
in power system studies for accurate results (Yin, Molini, 
and Porporato, 2020). Ultimately, risk characterization  
of extreme events will need to include a regional study  
of expected hazards and robust sensitivity analyses across 
the spectrum of uncertainties present in a future climate.

Need for Interaction Between the Climate 
Science and Power System Modeling 
Communities

Many of the changes outlined in this section highlight 
that historical time series such as those described in  
previous sections of this report are not appropriate for 
thinking about a future climate. A simple way that this is 
often dealt with is to de-trend the historical temperature 
record, bringing temperature levels up to those experienced 
in the present day (or projecting them forward to potential 
future levels such as was done in Bloomfield, et al. (2022)). 
However, for variables other than near-surface tempera-
ture, removing these trends can be complex due to the 
difficulty in separating climate change–induced trends 
from internal variability. This highlights an urgent need 
for interaction between the climate science communities 
and power system modeling communities to bridge this 
gap between known methods for processing historical 
data and the need to incorporate the impacts of   
climate change. 

Evaluating How Climate Change   
Affects Specific Weather Events That  
Adversely Affect Power Systems

Severe weather events like extreme temperature, precipi-
tation, and wind all impact grid infrastructure. Evidence 
points toward climate change increasing the probability 
of severe weather events, due to more energy availability 
in the atmosphere (mostly because of increased moisture 
content), and dynamical changes as the equatorial-to-
polar temperature gradients change. However, with the 
exception of extreme temperature events, this work is  
far from being settled science. With this in mind, power 
system modeling studies, especially those looking beyond 
the next five years, need to consider how high-impact, 
low-probability event risks such as those below might  

There is an urgent need for interaction   
between the climate science communities  
and power system modeling communities to 
bridge the gap between known methods for 
processing historical data and the need to  
incorporate the impacts of climate change.
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be taken into account with at least moderate certainty:

• Extreme temperatures leading to more frequent  
outages and derates of transmission and generation 
assets that coincide with high loads

• Very low resource availability for renewables that may 
happen but for which there is not yet a compelling 
signal relative to the noise of internal variability

• Drought and shifting timing of precipitation that  
increase the power grid’s exposure to wildfire-related 
risks (from wildfires damaging equipment or requiring 
de-energization to prevent electrical equipment from 
igniting fires)

How can power system modelers incorporate possible 
climate scenarios and articulate their uncertainty? How 
can energy meteorologists monitor these impacts and 
trends going forward? These questions are beyond the 
scope of this report, but power system modelers and  
atmospheric scientists must be thinking about them  
and working together to make sure that the right  
problems are being addressed.

Current Capabilities of Climate   
Projection Datasets

Although climate scientists have some understanding  

of the response of meteorological variables to climate 
change, the exact way that these changing meteorological 
variables transfer into power system impacts is complex. 
Issues with using future climate model simulations include:

• Available spatial resolution of datasets

• Available temporal resolution of datasets

• The need to fully incorporate future climate uncertainty

Throughout the climate modeling community there are 
multiple types of future climate simulations available for 
climate impact modeling. These include both global and 
regional climate models. All types of climate model data 
will require some calibration before use in power system 
modeling, and this is strongly encouraged so that these 
modeling results are not biased.

Global climate models are generally of lower spatial and 
temporal resolution (to account for having to model the 
whole globe), but these large-scale modeling simulations 
allow for an understanding of how local-scale behavior 
can link to large-scale forcings, such as impacts of  
different teleconnection patterns (climate anomalies that 
are related to each other at large distances) like El Niño–
Southern Oscillation or the Pacific–North American 
Pattern. They can also help with understanding of the 
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drivers of local changes through analysis of phenomena 
like jet stream position or pole-to-equator temperature 
gradients. Global climate models are generally run at 
horizontal grid spacing of 100–200 km with output  
at daily intervals.48 Examples of commonly used global 
climate models are the CMIP5 and CMIP6 ensembles, 
which contain data from multiple modeling centers and 
form part of the Intergovernmental Panel on Climate 
Change reports.49 Data are normally available for a  
historical period (sometimes as far back as 1850) through 
to 2100 to be used for integrated assessment modeling  
to aid in future policy decisions. Some state-of-the- 
art High Resolution Model Intercomparison Project  
experiments are now providing global climate model 
data at hourly resolution and approximately 50 km  
grid spacing, but these are very limited.50

Regional climate models are generally of much higher 
spatial and temporal resolution (~10–50 km and 1- to 
3-hourly resolution) than global climate models and  
can be thought of as “downscaled” global climate models. 
This higher resolution allows for much more information 
to be given at a particular location and for the analysis  
of diurnal cycles of relevant variables, which is useful for 
power system modeling. However, unpacking the under-
lying meteorological drivers of a system’s behavior may 
be more difficult, and models may have some issues 
around the boundaries of the domain. Generally, regional 
models are available in large ensembles with different 
combinations of global climate models providing bound-
ary conditions and regional climate models performing 
the downscaling, so these can provide a good assessment 
of climate model uncertainty. An example of this is the 
European EURO-CORDEX experiment and a similar 
project for North America called NA-CORDEX.51  
Although some regional climate models are created by 
statistically downscaling global climate data (e.g., using 
machine learning), and this can be done in-house at an 
institution, users must use caution, as the downscaled 
models may not accurately represent all the key climate 
processes.

Some “ultra-high-resolution” regional climate models  
are also available, often run using the Weather Research 
and Forecasting model (WRF). Pryor, Barthelmie, and 
Shepherd (2020) include an example run at 4 km. These 
models are useful as they run at a scale referred to as 
“convection-permitting,” so they can represent clouds 
more realistically, which is important for modeling re-
newable generation. These simulations are also operating 
at a scale consistent with the recommendations for  
realistic operation of a wind turbine parameterization 
(Fitch et al., 2012). However, although these high- 
resolution simulations may seem the obvious choice  
for wind power modeling, they are often only from  
one climate model for a single emissions pathway, and 
therefore focus primarily on accurately modeling internal 
variability rather than scenario and model uncertainty. 
Thus, the choice of climate modeling tool above will be 
very dependent on the science question being considered.

The use of multiple climate change scenarios is   
particularly useful for power system modeling that is 
highly dependent on changing temperatures, as there is 
relatively little internal variability and model uncertainty 
at the end of the century. In contrast, for wind and  
solar generation modeling, a range of models and  
many simulation years are needed to capture the   
high uncertainty in internal and model variability. 

A key point to note regarding the use of climate   
projections is that for the model to be useful it needs 
to have a good representation of the historical climate 
variables. This is particularly important when the weather 
data are being used as an input to power system models 
for which the impact is highly non-linear. For example,  
a small bias in wind speed leads to a large bias in wind 
power generation because of the cubic relationship  
between wind speed and wind power between the cut-in 
and rated wind speeds (see Figure 12, p. 65). Also, while 
changes in demand with temperature are somewhat  
linear for typical winter and summer temperatures, the 

48 The actual model time step (or internal temporal resolution) is much less than this. The reason for the widely spaced output interval is to manage the  
large volumes of data and because for global climate models it isn’t expected that output at high resolution temporal scale is representative of reality.  
The objective is to study trends, not create hourly data that can be used for downstream applications.

49 See the World Climate Research Programme’s Coupled Model Intercomparison Project at https://www.wcrp-climate.org/wgcm-cmip.

50 See, for example, https://www.primavera-h2020.eu/.

51 See https://www.euro-cordex.net/ and https://cordex.org/domains/region1-north-america/.

https://www.wcrp-climate.org/wgcm-cmip
https://www.primavera-h2020.eu/
https://www.euro-cordex.net/
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overall relationship of demand sensitivity to temperature 
is U-shaped, and the tails (the warmest and coldest days) 
can deviate significantly from linear relationships. Bias 
correction or calibration techniques are commonly used 
in climate science to take a multi-decadal historical period 
of climate model data and compare the parameters of its 
distribution to historical observations. The mean, variance, 
or skewness of the distributions can then be corrected 
(with similar corrections applied to the future climate 
period, if we assume the bias is stationary) to give more 
representative data. Bias correction of climate model  
data is strongly encouraged to make the climate model 
output as useful as possible when modeling impacts.

Global climate projections are generally only available on 
a daily temporal resolution (with limited high-resolution 
modeling efforts available at sub-daily resolution).  
This report has noted the importance of high temporal 
resolution data for modeling wind and solar accurately. 
Where high temporal resolution data are not available, 
there is potential for the daily cycles from historical  
data to be used to model sub-daily needs, but the  
potential for climate change to impact historical daily 

cycles should be considered if relying on historical  
sub-daily behavior.

Given the coarse temporal resolution of climate data, 
care should be taken when thinking about impacts at  
the site of a particular wind plant, or at a county level. 
The climate model grid boxes provide average conditions 
over the whole grid cell, and if this grid cell is complex 
(e.g., containing mountains, coastline, or cities), the  
results might not be representative of the site.

The applicability of climate change projections for  
energy system modeling is an emerging area of research. 
Multiple papers are now available on the impacts of  
climate change on individual power system aspects (e.g., 
demand, wind power, and solar power), and historical 
data from extreme events can be “adjusted” to show how 
they might have behaved under climate change (e.g.,  
as Bloomfield et al. (2022) do over Europe for extreme 
temperature scenarios), but results from full power system 
modeling simulations are more limited. A great deal of 
research is developing in this field, and future reports  
will be able to expand on this.
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7

S ECT I O N  8

Summary and Next Steps

The electric power system is increasingly weather-
dependent, with demand as well as supply  
being influenced by common weather patterns. 

Consequently, power system planning is increasingly 
complex and requires longer, higher-resolution datasets 
with coincident variables (temperature, wind speed/di-
rection, irradiance, etc.). These changes present a number 
of challenges to the power system modeling community, 
which needs to simulate power system operations for  
a variety of reasons including capacity expansion and  
resource adequacy planning. These studies need to evaluate 
system behavior across a wide range of potential weather 
conditions. More weather dependence and complexity 
require more accurate and comprehensive weather data. 

This report has outlined how weather data are used in 
power system modeling, discussed what power system 

modelers’ and planners’ weather data needs are, presented 
the seven attributes of an ideal dataset, and described  
a path to creating the ideal weather datasets. While the 
cost of creating such datasets is not trivial, the cost is  
low compared to the risks posed by the current data  
inadequacies—relative to the peril of flying blind.

Increasing Weather Dependence   
and Weather Complexity

Going forward, available generation will increasingly  
be defined by the weather occurring at the location of 
every wind or solar plant; multiple weather variables  
in particular, temperature, wind, and solar irradiance, 
now affect the amount of generation possible. Demand 
has also long been modulated by weather conditions,  
especially temperature, and the electrification of   
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transportation and building conditioning is further  
increasing its weather dependence. Thus, the possible 
range of electricity system outcomes is becoming  
more diverse and far more complex. 

In the future, demand will no longer be primarily  
described as a function of time of year, day of week,  
time of day, and temperature, and utility-scale generation 
will no longer be simply a function of available capacity 
and outage rates. Rather, supply as well as demand will 
be heavily affected by weather patterns, causing high-risk 
periods in which weather variables lead to decreased  
supply and increased load simultaneously.

High-risk events do not have to be “extreme” in the  
classical sense to pose risks. As more wind and solar  
generation is added to the resource mix, combinations  
of events, such as low winds and moderately cold  
temperatures, will strain the grid.

The Need for Better Weather Data

When evaluating possible future scenarios of power  
system build-out in power system planning studies,  
power system models use historical weather data to  
determine the possible operating conditions that can  
occur, and their likelihood. Ideally, the weather data used 
to determine weather impacts on supply and demand 
would come from a reliable observational record of past 
conditions. However, because of the diversity of renew-
able resource generating locations, such a record does not 
exist and is not practical to produce. Therefore, models 
are used to synthesize historical weather datasets.

To be useful, models capture a similar range of possible 
weather scenarios impacting elements of the electricity 
system as is observed. Models must be able to represent 
the level of temporal and spatial granularity that defines 
the weather impacting load and generation and capture  
a range and distribution of possible weather scenarios 
impacting elements of the electricity system similar to 
that which is observed. Several weather datasets exist  
and are used by power system planners to estimate load 
and renewable resource production for use in planning 
studies. However, no datasets exist that meet the require-
ments with sufficient accuracy, spatial and temporal  
resolution, or record length to capture all the possible 
drivers of supply and demand balance in the new paradigm.

Currently available datasets either:

• Are too low in resolution

• Do not have a long enough time history, and therefore 
cannot capture the full range of lower-probability 
events, which are often high-risk periods that must  
be modeled accurately in system planning analyses

• Are antiquated

• Do not capture all necessary weather variables  
in a physically consistent fashion

Models that attempt to reproduce the   
wind and solar profiles based on predictors  
like temperature may appear to produce  
a reasonable long time series, but careful  
validation will usually reveal a poor match  
with reality. The limitations are not well   
documented, the level of uncertainty is not  
currently well quantified, and the power system 
sector’s understanding of the data is poor.

Yet model data are often used as if they have the   
accuracy and degree of uncertainty of observations,  
when in fact their representativeness in time and space  
is a function of the model configuration and inputs  
used. Models that attempt to reproduce the wind and 
solar profiles for a given day based on predictors like 
temperature may appear to produce a reasonable long 
time series where the range of output variables looks as 
though it reflects reality quite well, but careful validation 
will usually reveal a poor match with reality, especially 
when one looks at coincident combinations of different 
variables across a region. These limitations are not well 
documented, the level of uncertainty is not currently  
well quantified, and the power system sector’s under-
standing of the data is poor.

In some cases, synthetic data are being used as if they  
are direct observations of weather conditions or validated 
model results, with little or no consideration for how  
imperfections might impact results and conclusions  
in the power system studies in which they are being  
deployed. In other cases, synthetic datasets are rejected, 
and alternative simpler solutions are deployed that are 
typically even more problematic.
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52 Grid spacing 2 km or better in complex topography due to rapid variation in the wind field, and 10 km grid spacing or better over flat land or open ocean; and 
a vertical resolution of 10–50 m in the lowest 300 m of the atmosphere or as high as can be demonstrated to be valuable relative to the computational cost.

Observations of key weather variables used in power  
system modeling inputs are critical to validating the 
quality of weather model output. These need to be taken 
at a density that provides some confidence in the weather 
model output in locations where they impact load and 
generation. While temperature observations are widely 
available for validating synthetic temperature data within 
load centers, there are very few observations available  
to validate synthetic data produced to estimate wind  
and solar generation. One solution to this dilemma is  
to use the many observations made at wind and solar 
generation facilities; however, these are rarely made  
available. Broad access to observation archives for exist-
ing weather-driven power plants would be very valuable 
for validating and bias-correcting model data, and it  
is recommended that facility owners be incented or  
required to share these data.

The Attributes of Better Weather Datasets

The most pressing need is to be able to estimate the  
supply of wind and solar generation in current and future 
power system portfolios. This means accurately quantify-
ing the weather driving these generators at every plausible 
location where they exist or may be built, including  
behind the meter. In addition, the data must represent 
the chronological evolution of weather to model and  
optimize charge and discharge of battery storage  
and demand response. 

These data need to:

• Include the necessary variables at sufficient temporal 
resolution (at least hourly, with 5-minute data needed 
for some purposes) with sufficient accuracy and spatial 
resolution52 to produce meteorological fields that  
are representative of actual conditions that define the 
generation potential at current and future wind and 
solar sites (including those behind the meter) and 
temperature at load centers

• Cover multiple decades with a consistent methodology 
so that the range of expected conditions can be  
quantified, and be extended on an ongoing basis  
to capture the most recent conditions

• Be coincident, chronological, and physically   
consistent across weather variables

• Be validated against real conditions with uncertainty 
quantified

• Be documented transparently and in detail, including 
a description of their limitations and a guide for usage

• Be periodically refreshed to account for scientific  
and technological advancements so the data remain 
relevant

• Be publicly available, expertly curated, and easily  
accessible

It is crucial to have comprehensive,  
standardized, public domain datasets designed 
specifically for power system modeling  
activities if the energy transition and renewable 
energy build-out are to proceed in a cost- 
effective way while ensuring system   
reliability and resilience.

The Benefits of Better Data

It is crucial to have comprehensive, standardized, public 
domain datasets designed specifically for power system 
modeling activities if the energy transition and renew-
able resource build-out are to proceed in a cost-effective 
way while ensuring system reliability and resilience.  
Such datasets will enable more thorough and accurate 
representation of weather impacts on the supply of  
renewable resources for any combination of resources,  
as well as the concurrent weather impacts on demand, 
traditional generation sources, and transmission. This  
is essential for renewable integration studies, resource 
adequacy assessments, capacity expansion modeling,  
and integrated resource planning. 

The data will also benefit other parts of the electricity 
sector including renewable resource assessments and  
renewable resource performance analyses. If properly  
designed and archived, a high-resolution dataset would 
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be extremely useful for foundational research work to  
examine the relationships between load and renewable 
resources, between broader weather patterns and climate 
signals, and for establishing possible climate trends.  
Datasets like the one proposed in this report would be a 
leap forward in the state of the science for describing the 
condition of the atmosphere at high resolution and thus 
would be of tremendous interest to many other sectors 
that are weather data stakeholders.

The work required is not trivial. But it is manageable and, 
importantly, much less costly than blindly building trillions 
of dollars of infrastructure without the basic tools to 
cost-effectively optimize it and assess its reliability.

Producing the Data We Need

Weather patterns affecting wind and solar production 
need to be properly captured, which will involve using 
numerical weather prediction (NWP) models run at  
resolutions of 2 km grid spacing or less. It is possible  
that applying generative adversarial network (GAN)  
machine learning techniques might allow the number  
of high-resolution simulations to be reduced and  
thus reduce computational expense.

The first step in producing the weather data needed for 
power system planning now and going forward is for a 
technical review committee to vet and refine the dataset 
requirements. The technical review committee would 
then determine how to produce the best possible dataset 
that fits budget constraints by identifying candidate 
methods and produce a short time series of data (e.g., 
one year) to compare with widely used datasets like 
ERA5, the High-Resolution Rapid Refresh (HRRR) 
model, and the National Solar Radiation Database 
(NSRDB). Great strides can be made for weather  
inputs used to estimate wind generation relative to  
these existing datasets, but improving on the solar  
data from NSRDB might be more challenging.

Once the methodology for creating the needed dataset 
has been established, the next step will be to operationalize 
its production and archive. It will be essential to ensure 
that the system is well documented, that the data  
produced are validated against actual conditions, and  
that data users are provided with the transparent infor-
mation they need to understand how the data differ  

from reality and how this might impact power system 
modeling results.

The Importance of Cross-Disciplinary  
Cooperation

The weather is complex, as is the electricity system.  
Few people have more than a basic grasp of both fields. 
The lack of holistic understanding is leading to the  
misapplication of data that can result in invalid power 
system modeling results and poor decision-making. 
There is an urgent need for coordination, cooperation, and 
education between power system experts, meteorologists, 
and climatologists. It is crucial that power system modelers 
clearly articulate their data needs, and just as important 
that the providers of weather and climate data under-
stand how the data are being applied in power system 
modeling and engage with power system planners to  
ensure they understand the limitations of the data  
that are being provided.

—————————

With rising levels of wind, solar, and storage and  
increased electrification, power system planning is  
becoming more complex and more weather-dependent—
with a greater need to accurately model the impacts  
of weather variables on resource adequacy and system 
reliability. Accurate modeling requires a validated, high-
resolution dataset with a long time series for key weather 
variables. The availability of such an ideal weather data-
set, together with education and coordination between 
the meteorology and power system communities, will 
equip system planners to guide future resource siting  
and build-out for a reliable, high-renewables grid.

The weather is complex, as is the electricity 
system, and few people have more than a basic 
grasp of both fields. The lack of holistic under-
standing is leading to the misapplication of 
data that can result in invalid power system 
modeling results and poor decision-making. 
There is an urgent need for coordination, coop-
eration, and education between power system 
experts, meteorologists, and climatologists.
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Glossary

Background field 

A first guess of the atmospheric state used in numerical weather prediction, usually  

obtained from the output of a prior model run. Available observations are applied to the 

background field during the data assimilation process to arrive at the model initial condition. 

Bootstrapping 

A statistical procedure that resamples a dataset with limited data points to synthetically 

create a broader sample size with the objective of more completely capturing the range 

of possible values. For example, one can bootstrap three years of temperature data at a site 

into 50 years using relationships with daily temperature at nearby sites.

Boundary conditions 

In numerical weather prediction, the conditions at the edge of the region being modeled 

that define how the state of the system outside of the area being modeled propagates 

into the simulation at the edges

Capacity factor 

A normalized measure of output of a generator (whether conventional coal or gas,  

solar, wind, etc.) expressed as a percentage of total possible generation during the  

same time period. For example, a generator with a maximum output of 100 MW producing 

50 MW is running with a 50% capacity factor. 

Downscaling 

In NWP, the process of taking model output at a given fidelity (grid spacing) and  

applying it to a model that uses a higher spatial (and possibly temporal) resolution.  

Because the higher-resolution model represents both static features (like model topography) 

and dynamic features (like temperature and wind speed) with more fidelity, the downscaled 

results will reflect the features that are produced as a result of the interaction of the large-

scale flow with smaller-scale environmental features.

Dynamically consistent 

Adhering to relationships determined by physical laws that bind together different  

atmospheric variables in time and space according to well-defined mathematical  

relationships (a synonym of physically consistent). Observations of weather variables  

(for example, temperature and wind speed) that are coincident in time and space are always 

dynamically consistent with each other, as are the output fields from physics-based models. 
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Though output fields from a physics-based model are dynamically consistent with each other, 

this does not mean that physics-based model fields from two different models or from a model 

and observations will be dynamically consistent with each other. Data output from a statistical 

model, or multiple statistical models, will not be dynamically consistent unless the statistical 

model implicitly captures the dynamics of the system (this is starting to happen with  

advanced machine learning techniques). 

Energy-limited resource 

A resource that can only deliver a limited amount of energy before becoming   

unavailable. For example, batteries and pumped storage can only provide generation until the 

energy stored in them is depleted, at which point they must be recharged. Likewise, there is a 

limit to the amount of time that a demand response program can ask consumers to cut back 

on their usage. 

Ensemble dataset 

A dataset containing two or more versions of the same data created in different ways. 

For example, a time series estimate of temperature, wind speed, and irradiance for the exact 

same times and locations, but generated by three different configurations of model physics,  

is a three-member ensemble, often called a physics ensemble. 

Firm capacity 

A colloquial term usually used either to indicate generators that are almost always 

available to generate at rated output when they are online unless they are forced into  

an outage by unforeseen circumstances like equipment failure (traditionally applied to 

coal, natural gas, and nuclear plants) or to indicate the amount of capacity a generator 

is likely to provide during times of tight supply conditions. All generators can be consid-

ered as firm under certain conditions. For example, a 100 MW solar plant can be considered 

as being able to provide 80 MW of firm capacity in the middle of the day on a cloud free  

day when no clouds formation is expected.

Future-proof 

Able to serve the needs of power system modelers and planners as the transition  

to a high-renewables grid proceeds, and as new methods emerge that may make prior  

iterations of the data defunct

Gate closure time 

In wholesale electricity markets, a lead time before actual operations when decisions  

are made.  For example, all of the bids for a day-ahead market must be received before a  

certain time the previous day so that they can be used in the unit commitment process. Real-

time markets and the sending of dispatch instructions also have closure times. Wind and solar 

generation forecasts that are used to inform these processes need to bereceived before the 

closure time to be useful. Another example is the time when natural gas has to be purchased 

ahead of when it is needed on the power system.
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Global climate model 

A model designed to simulate the physical processes occurring in the Earth system   

to produce output representing the state of the system for years, decades, or even  

centuries, into the future. Global climate models couple together all of the components  

affecting the climate system—the atmosphere, oceans, cryosphere (ice), and land surface—

including modeling and tracking components that may change in time, such as greenhouse 

gas concentrations, ice coverage, ocean temperatures, aerosols, solar irradiance, orbital 

changes, vegetation coverage, etc., all of which feedback on one another.

Grid point 

A discrete point in space where the properties of a system being modeled are represented 

and tracked. The distance between a model’s grid points is one of the primary determinants 

of how well the model can represent the real world.

Gridded data 

A dataset that contains the value of different fields (for example, temperature and wind) 

across many grid points. Gridded data can be 1D (a line of points), 2D (an array of points  

representing a horizontal or vertical slice), or 3D (an array of points representing a volume)  

in space, and can also have a time component (i.e., each grid is repeated for different times).

Ground truth 

The actual observed value for a quantity, as opposed to a model-synthesized  

or -forecasted value

Initial condition 

The state of a time-dependent dynamical system. For example, the initial condition in   

a numerical weather prediction model represents, as closely as possible, the state of the  

atmosphere at the starting point of a simulation that is aimed at predicting the future  

atmospheric state.

Lead time 

Distance into the future of a forecast. For NWP models, lead time is usually expressed as 

how far into the future the forecast is, relative to the time that the initial condition represents, 

not the time difference between when the forecast is issued and when the forecast is for  

(valid time). For example, if the state of the atmosphere is observed at 4:00 am, assimilated 

into an initial condition by 6:00 am, and used to produce a forecast at 7:50 am that provides  

a forecast of condition at 10:00 pm, the lead time is stated as 18 hours (from 4:00 am to 

10:00 pm). It is stated this way because the further into the future being predicted, the  

lower the accuracy is likely to be. 

In contrast, in the power sector lead times are considered as referencing the time into the  

future from the time the forecast was issued. So, if the NWP output from the example above 

was fed into a generation prediction model as soon as it was produced at 7:50 am, and   

produces a forecast by 8:00 am of the expected wind generation at 10:00 pm, the lead  
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time will usually be stated as 14 hours (8:00 am to 10:00 pm). This can cause considerable 

confusion.

Monte Carlo methods 

A class of modeling that uses repeated random sampling from a probability distribution 

and uses the sampled value as the input to a deterministic equation or algorithm. By  

repeated random sampling within the input distribution, the range of output possibilities  

can be determined provided the input probabilities are known and process inputs are  

independent.

Normalize 

To scale related quantities so that they can be compared. For example, take wind farms  

A, B, and C in three different locations. The wind farms have maximum output capacities  

of 50 MW, 100 MW, and 200 MW. A’s average annual output is 25 MW, B’s is 40 MW, and C’s  

is 80 MW. To answer the question, “Which produces the most power relative to its size?”   

the data need to be normalized to a standard scale, for example, output as a percentage of  

maximum capacity (the definition of capacity factor, given above). We then find that A has  

a capacity factor of 50% while B and C have capacity factors of 40%.

Numerical method 

The process of using an algorithm to solve or approximate the solution to a problem, 

usually using a computer that iterates through many calculations to converge on   

a result. Numerical methods enable the solution of mathematical problems, such as  

those involved in weather prediction, that are difficult or impossible to solve analytically.

Numerical weather prediction 

Solving the equations that govern the state and motion of the atmosphere using  

numerical methods, so that if the state of the atmosphere at one time is known, the 

state at a nearby time can be estimated

Overfitting 

When a complex relationship between multiple variables is found within a data sample 

of model output, but, when the relationship is applied to data outside of the sample,  

validation shows it is not robust

Parameterization (or scheme) 

A sub-model that empirically simulates a particular meteorological process that either 

cannot be modeled explicitly or is computationally too difficult to model explicitly 

Physics-based (or physical) model 

A model of atmospheric processes that adheres to physical laws and can be described 

mathematically as a system of regular and partial differential equations (see also  

“numerical method”)
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Physically consistent 

A synonym of dynamically consistent

Resource adequacy 

An analytical process that evaluates whether there are enough resources on the power 

system to serve load across a wide range of potential conditions, including load, weather, 

and unexpected outages. The results help determine the amount of resources needed to  

be able to serve load at a specified level of reliability. 

Reanalysis 

For context, weather analysis is a process that takes available weather data and uses them  

together with knowledge of the laws of physics to estimate the state of the atmosphere and  

is the first step in the forecasting process. Reanalysis is similar to weather analysis but  

occurs after the fact when all of the possible data are available, including what would 

have been the future state of the atmosphere. Through the use of sophisticated computer 

codes, reanalysis reconciles all the data from observations and past, current, and future  

model estimates in an effort to produce the most accurate weather analysis possible.

Thermal generator 

A generator using combustion, fission, or geothermal heat to drive a turbine to produce 

electricity—i.e., coal, natural gas, and nuclear plants. Turbines may be turned directly by 

hot exhaust gases (e.g., a gas combustion turbine), by steam produced from the heat source 

(e.g., coal and nuclear plants), or by a combination of both (gas combined-cycle plants).

Transfer function 

A mathematical function that relates one (or several) input variables to an output  

variable. For example, a wind turbine power curve is a transfer function that relates wind 

speed and air density to power output.
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Appendix A: 
Additional Insights into Linkages Between  
Electricity Systems and Meteorology

The primary linkages between variables in the weather and climate system (gray) and the electricity system (orange). There  
are many feedbacks between all of the environmental variables; the strongest links are shown in dashed gray lines. Dark blue lines 
indicate direct dependencies that are most important in everyday operation of the electricity system, while orange lines indicate 
dependencies that do not typically have a large impact on a daily basis but can have a profound impact in particular circumstances 
or combinations. For instance, freezing temperatures, high humidity and/or freezing rain can cause wind generation to become  
unavailable due to icing, and extreme winds can damage transmission and distribution infrastructure.

Source: Energy Systems Integration Group.

F I G U R E  A . 1 

Electricity System Weather-Dependence

As documented in Section 1, weather and  
climate interact with power systems in numerous 
different interconnected ways. The most important 

variables are temperature, insolation, and wind speed. 
Load, wind generation, and solar generation are all  
influenced to some degree by these fields. Their relative 
level of importance depends on an electric system’s load 

types and the relative amount of wind and solar   
generation compared to hydro and thermal generators. 
Precipitation is very important to systems with signifi-
cant hydro generation, and in times of drought can  
also affect cooling water for thermal generators. Figure 
A.1 shows the interactions between the key variables, 
depicts the other environmental factors affecting each 

Aerosols Clouds 
type, cover, depth

Humidity Pressure

Groundwater 
recharge,  

evaporation, runoff

Snow 
cover, pack,  

melt, evaporation
Wind

Solar
Generation

Hydro 
Generation

Thermal
Generation

Load Transmission 
& Distribution

While all environmental variables are interdependent, these are some of the strongest internal links.

Dependence of the electricity system on the climate system.

Strength of dependence is highly variable and depends on asset type and location.

Degree of dependence can be greatly amplified by specific weather and climate conditions.

Typical magnitude is approximated by the thickness of the lines.

Wind
Generation

Insolation

TemperaturePrecipitation 
type, amount
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component of a power systems, and illustrates the  
complexity of the coupled Earth system and electricity 
system. While the strongest internal linkages between 
the different environmental factors are shown, every 
weather variable impacts all others in some way. Some 
combinations of weather variables, such as severe winter 
storms with low temperatures and frozen precipitation, 
or hot, dry days with strong gusty winds, can pose  
profoundly amplified risks to the power system.

The electric power sector uses meteorological data  
for three general purposes: (a) development of weather-
dependent generation and assessment of the performance 
of that generation, (b) system planning and adequacy, 
and (c) operations. Each has its own spatial and temporal 
requirements for assessment of weather and climate, and 
thus uses different types of weather and climate data.  
The body of this report focuses on system planning and 
adequacy studies. Here we provide some background  
on how data are used for the other two categories to  
allow interested readers to compare and contrast them 
and explore synergies that exist in applicability of  
existing and proposed datasets.

Figure A.2 (p. 124) illustrates a typical flow of weather 
data into the three main power system use cases (orange 
boxes), showing the relationships of the data sources 
(light blue boxes). All data, except for projections of  
future climate, are ultimately derived from the envi- 
ronmental observations concerning the state of the  
atmosphere (light orange box), but there is a modeling 
layer (dark blue boxes) where a great deal of computation 
occurs to take the weather observation data that are 
available and extrapolate them to a regular grid that  
provides estimates of the key variables seen in Figure 
A.1. This modeling process is essential because the  
available near-surface observations do not begin to  
provide the necessary level of detail, especially to esti-
mate wind and solar generation at all of the locations 
where estimates are needed. However, the modeling  
layer also introduces uncertainty that cannot be   
ignored, but, unfortunately, often is.

The weather and climate data are then used both as  
an input to produce estimates of past, present, or future 
states of the electricity system (medium blue boxes) and 
directly in analysis done for each use case. The dotted  
box denotes processes where it is sometimes desirable  

to utilize climate predictions in order to assess the  
impacts of climate change.

When using meteorological data in power system  
planning, it is important to understand the source of  
the data and how well they capture the spatial and/or 
temporal variability of weather phenomena that affects 
the electricity system components one is trying to assess. 
The quality and applicability of model outputs depend 
on the quality of the model used, its resolution (the  
fidelity with which the model is run), and the quality  
of the original observations. For example, if performing 
resource adequacy studies on a winter-peaking system, 
output from a model that commonly over-predicts wind 
speed on cold days in regions with large amounts of wind 
generation is unlikely to properly capture the correlated 
weather risk of low temperatures driving both loads  
and low wind generation.

Weather Data for Resource Assessment 
and Performance Assessment of   
Renewable Energy Projects

Meteorological data are the main input to the resource 
assessment process that determines the expected output 
of proposed renewable energy projects. The objective  
of these assessments is to obtain the best overall energy 
estimate possible within a reasonable budget and time 
span. It is crucial to maximize accuracy and minimize 
uncertainty in the estimate of plant output to determine 
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F I G U R E  A . 2 

Flow of Weather Data into the Primary Power Systems Processes That Require  
Meteorological Data for Analysis Tasks
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?3$%)#2-?3$%)#2-

,,
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Forecasts Analyses
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Predictions 

Climate Data Current Weather 
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Load, Renewable 

Energy, Hydro Estimate of  
Load, Renewable 

Energy, Hydro

Operations 
(unit commitment,  

dispatch)

Renewable  
Development 

(output estimates  
and uncertainty)

Planning 
(resource optimization, 

resource adequacy)

Data  
Assimilation

Data Assimilation
and Nudging

Quality  
Control

Assess impacts of  
near-term weather on all  

existing supply and demand 
(situational awareness)

Evaluate a single 
site in detail 
through time

Determine coincident weather  
impact on loads, renewable generation, 

generator availability/derate, hydro

Short-Term  
Planning 

(optimization,  
hedging, trading)

Current and short- to medium-term forecasts                                                              
• Estimates of present weather state
• Short-range (minutes) to mid-range  

(2–3 weeks) forecasts
• Sub-seasonal to seasonal forecasts  

(3 weeks to 6 months)

• Time series of past weather
• Chronological data with 

variables physically 
consistent in time and  
space

Assess weeks- 
to months-ahead 

estimates of weather 
impacts on supply  

and demand

Weather data (light blue and dark blue boxes) flow into the primary power systems processes (orange boxes) that require  
meteorological data for analysis tasks. In some cases, this includes tasks that estimate states of the electricity system (medium 
blue boxes) that are impacted by the state of the atmosphere. Solid lines indicate the flow of data that are output from one  
process and become an input to another. The dashed line from observations to global climate models indicates that the data 
are used in validation of average global climate model outputs versus as an input to their production.

Notes: ML = machine learning; NWP = numerical weather prediction.

Source: Justin Sharp, adapted for the Energy Systems Integration Group.

• Decades-long time 
series estimates of 
potential future 
climate scenarios

the viability of a renewable energy project and obtain  
financing. The estimate is usually broken down by average 
output for the month and hour of day and also presented 
in the form of 8,760 time series data, showing estimates 
for the average expected output for each hour of the year. 
Variability and uncertainty are also estimated. Gross  
output for proposed wind and solar projects needs to be 
adjusted for losses, many of which are weather-related 
items such as blade icing; blade pitting due to lightning; 

high wind cut-out; high and low temperature cut-out  
for wind projects; and panel or blade soiling, smoke, and 
snow cover on solar panels.

For wind energy, the wind at multiple heights is needed 
to determine the shear across the rotor, and one needs  
to determine the effective wind across the rotor sweep 
and the suitability of the turbine locations from the  
perspective of shear forces, turbulence, inflow angle,  
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and peak expected wind. In addition, the resource  
can vary considerably across a site due to microscale  
meteorological effects, usually driven by topographical 
effects. Models are usually used to estimate these effects 
across the multiple turbine locations, with a handful of 
short observing campaigns being performed to evaluate 
the validity, bias, and uncertainty of the model output. 
Wake effects are also estimated using models once the 
turbine layout has been determined.

The primary variables to predict wind generation are  
of course wind speed and direction. Wind generation is 
also a function of air density, which can be derived from 
temperature and pressure. In addition, relative humidity 
is important for assessing icing risk. Solar irradiance is 
most important for solar generation, and photovoltaic 
generation is also significantly impacted by panel  
temperature, which is a function of ambient temperature 
and wind speed. The sources of all these data points need 
to be concurrent because they are related. For example, 
generation lost to icing depends not just on the amount 
of icing, but how strong the wind is when it occurs.

To meet the above goals, resource assessment usually  
involves conducting measurement campaigns at loca-
tions of interest that last one or more years. Usually  
a combination of met masts, sodars, and lidars are used 
so that the wind can be measured at multiple height  
levels at multiple sites. Where masts are used, tempera-
ture is usually measured at two or more levels so that  
atmospheric stability can be assessed. The observational 
data need to have few gaps, be taken frequently enough 
to assess variability and (in the case of wind energy)  
turbulence, and provide for hourly averaging. Thus,  
observations are typically taken every five minutes using 
platforms deployed specifically for resource assessment 
that are closely monitored and maintained. Because  
measurement campaigns are not usually long enough to 
determine a full climatology, the observed data then need 
to be put into the context of the broader climate. This  
is usually done using measure, correlate, and predict 
(MCP) methodologies that use overlapping periods  
between the measurement campaign and longer time  
series from either numerical weather prediction output, 
nearby in-situ observations, or remote-sensed data, to 
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normalize the campaign data relative to typical climate. 
This dataset should be at least a decade long, and ideally 
span multiple decades to fully capture the interannual 
variability. However, it does not have to be of equivalent 
quality so long as the measurement campaign and spatial 
modeling properly capture the characteristics of the  
resource.

After a wind or solar project is built, the resource  
still needs to be measured for several reasons, including 
providing a way to measure the power generation  
performance of the project relative to the wind and  
solar resource to ensure that it is operating as expected, 
to compare with the original resource assessment and 
provide feedback into the accuracy of the process, and to 
provide site data for situational awareness and forecast-
ing in operations. Usually, the resource assessment  
measurements used prior to construction are designed  
to be temporary and are removed when the project is 
constructed, with new permanent observations replacing 
them. In the case of wind facilities, wake effects of the 
new project need to be considered in the placement and 
use of these observations and when comparing them  
to the pre-build data.

Proposed and operational plant meteorology data need 
to be highly representative of the actual conditions at the 
plant, have quantifiable uncertainty, and be long enough 
to capture climatological variability and extremes in the 
fields driving output and possible outages/derates. For 
wind, the data must provide insights into how the resource 
varies across the site footprint. However, they do not 
need to cover areas outside the project. This contrasts 
with data for grid operations, which need to cover resource 
information for all generators in the balancing area, and 
for planning/adequacy studies, where data need to cover 
all possible places where renewable projects are proposed.

Ideally, some way to estimate the possible range of  
resource changes in an evolving climate should also be 
available, but research into this is in its infancy. The best 
currently available methodology is to continue to keep 
consistent, high-quality records at project sites and  
begin to look for trends.

Real-Time Operation of the  
Electricity System

Weather inputs to electricity system operation focus 
mostly on situational awareness and short-range   
forecasting—what is happening now and what is  
predicted to happen in the next few days. Some focus  
is placed on medium range (one to two weeks) and  
seasonal projections (the next few months), but most  
of the emphasis is on the next two days. Weather  
inputs are used to:

• Forecast expected demand, net of any behind-the- 
meter variable generation

• Forecast wind, solar, and hydro generation

• Determine the likelihood of derates and outages  
of all generation types and transmission

• Assess the quality of forecasts relative to current 
information

• Assess risks to transmission and distribution   
infrastructure due to wind, icing, or fire

This information relies on observational and forecast data 
that then feed into power markets, unit commitment, and 
dispatch processes to ensure that supply and demand are 
balanced in the most effective way given generation and 
demand forecasts.

The core attributes of these weather inputs are that they:

• Are timely: current conditions must be available in 
near-real time, and forecasted conditions need to be 
available in time for market and operational gate  
closures.

• Are reasonably accurate: greater accuracy would be 
helpful, but the current accuracy is acceptable. (One 
priority for improvement is to improve forecasting  
for high-impact, low-probability events.)

• Provide a general estimate of net load and bulk  
forecast: the geographical area of consideration is  
the generation and load footprint, with the priority 
being estimating the net load accounting for behind-
the-meter renewables and the bulk forecast of output 
of wind and solar plants (as opposed to intra-site  
detail).
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Appendix B: Weather 201

This appendix augments Section 2, “Meteorological 
Data Fundamentals for Power System Planning,” 
for the benefit of readers who would like more  

details.

In-Situ Observations

In-situ observations provide measurements specific to 
their location. In-situ measurements are appealing, as 
their uncertainty and quality are usually easy to quantify, 
the instrumentation is relatively cheap, and they often 
have long records. However, their spatial coverage is  
typically limited.

In-situ measurements have been taken around the world 
for centuries, and long records are available at some sites. 
Examples include thermometers, precipitation gauges, 
and barometers. Uncertainty and accuracy depend on the 
instrument specifications, placement, and maintenance. 
Most in-situ observations are fixed in space and are  
typically surface-based, with towers used to gather  
measurements from multiple near-surface levels. Another 
form of in-situ measurement uses radiosondes, an instru-
ment package carried aloft by a weather balloon. These 
instruments report the instrument location as part of  
the data collected.

Remotely Sensed Observations

Remote-sensing instruments either observe atmospheric 
data from somewhere remote from the measurement  
location (passive sensing) or send out a signal and observe 
the interaction of the signal with the atmosphere (active 
sensing). This means that remote-sensing devices can 
gather data from large areas or volumes by scanning 
across them. Examples include cameras (a passive sensor) 
flying on orbiting satellites and weather radars (an active 

sensor that sends out a pulse of radio waves and   
measures the reflected signal).

Remotely sensed data from a vast array of instruments 
located both on satellites and on the ground are now  
recorded in large quantities, often at high spatial and 
temporal resolution. Examples are weather radars,  
atmospheric sounders, and atmospheric imagers.   
These instruments usually measure at multiple locations 
along a line or within a volume. Often, the instruments 
are space-based, in which case they may either be in  
geostationary orbits, which always have the same field of 
view of the Earth and thus provide frequent observations 
within their view, or be in an orbit that transits different 
parts of the planet, thus covering a broader field of view 
but with less frequent observations at any given location. 
Remotely sensed data have revolutionized our ability to 
diagnose the four-dimensional state of the atmosphere 
and are a critical input to models that produce widely 
used gridded datasets derived from numerical weather 
prediction (NWP) and other types of modeling. 

Some major complexities are associated with remotely 
sensed data that need to be understood if one is using 
the data directly without expert guidance. The quantities 
measured sometimes have complex relationships to the 
atmospheric variables that are derived from them and 
require significant processing to arrive at the atmospheric 
data. Further, atmospheric conditions can affect sensitivity, 
accuracy, and range. For example, weather radar measures 
atmospheric reflectivity, and this is a function of precipi-
tation type among other factors, and heavy precipitation 
will limit range.1 The instrument response may be quite 
nuanced; therefore, care is needed in interpretation of 
data. For example, lidar and radar, both of which can  
be used to remotely sense wind, can “see” farther in clear 
conditions; however, if the air is  exceptionally clean, 

1 Rain has a much higher radar reflectivity than snow, except melting snow produces more reflection. Large hail produces even larger returns than rain or snow.
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these instruments will not be able to sense the wind  
conditions. For scanning instruments, the volume being 
sensed increases with distance from the radar and the 
average resolution decreases, because the scan produces 
ever larger concentric circles. Similarly, visible satellite 
imagers can detect the tops of clouds, but the same 
clouds prevent the imager from seeing clouds at   
other levels.

The Impact of the Era of Satellite Remote 
Sensing on Weather Observations and 
Modeling

The year 1978 is generally considered the beginning  
of the satellite era for weather prediction purposes.  
Continuous monitoring by weather satellites began in 
1974, and the first polar-orbiting environmental satellite 
(POES) was launched in 1978. The POES program 
greatly improved the data available for assimilation, as 
polar-orbiting satellites orbit at a much lower altitude 
(about 850 km above the surface, versus 35,780 km for 
the Geostationary Operational Environmental Satellite 
(GOES)), allowing much higher-resolution sampling. 
These satellites also use active sounding sensors that  
in many cases can penetrate clouds and provide more  
information about the environment, including ocean 
temperature and surface winds on the ocean, and can  
estimate temperature and humidity profiles. Subsequent 
satellites have been equipped with increasingly sophis-
ticated and high-resolution instrumentation, leading  
to a dramatic increase in the quality of atmospheric  
analyses as observations from large volumes of the  
atmosphere became available.

Numerical Weather Prediction

All weather inputs for operational load, wind, and  
solar forecasts in the electricity sector are based on  
foundational data coming from government-operated 
NWP programs. This is because the process of collecting 
and assimilating data is costly and requires cooperation 
across nations, and the models themselves require  
vast quantities of computer resources. In some cases,  
additional NWP tasks are performed by users or providers 

in the energy sectors in the process of producing sector-
specific products, but for the most part, at this time,  
the NWP output of the major national centers—the  
European Center for Medium-Range Weather Fore-
casting, the UK Meteorological Office, the U.S. National 
Oceanographic and Atmospheric Administration’s National 
Centers for Environmental Prediction, and the Canadian 
Meteorological Center—is difficult to improve upon in  
a timely and cost-effective manner. Most providers in  
the energy sector focus on statistical post-processing  
of the raw NWP data, usually using machine learning 
techniques.

Reanalysis Output Refactoring

Raw model output from the reanalysis process is   
archived, but the data provided to users are usually  
refactored into datasets that provide a standard set of  
atmospheric variables on a regular grid that is typically 
mapped to a sphere with multiple vertical levels. For 
spectral models, the raw model archive consists of  
spectral coefficients or gridded data on a reduced  
Gaussian grid,2 so it is usually interpolated to a fixed  
latitude and longitude spacing when provided to end  
users. This means that grid spacing in the north-south 
direction is constant but west-east spacing varies with 
latitude. For example, a 0.25° latitude x 0.25° longitude 
grid has north-south spacing of 27.8 km everywhere,3 
while the west-east spacing is 27.8*cos(latitude), which  
is 27.8 km at the equator, 24.1 km at 30 degrees, 19.7 km 
at 45 degrees, and 13.9 km at 60 degrees. It is important 
to note that in this case the apparent increased horizontal 
west-east resolution at higher latitudes is an artifact of 
this interpolation and is not an indication of increased 
resolution at high latitudes.

Reanalysis data are usually provided to end users on  
familiar vertical coordinates like height or pressure  
levels. For example, ERA5 (Fifth-Generation ECMWF 
Atmospheric Re-Analysis of the Global Climate) data 
are provided at 25 hPa intervals starting from 1000 hPa. 
However, the native model output represented on a  
terrain-following vertical coordinate has far better  
vertical resolution near the surface. This can be useful  

2 A discussion of spatial referencing, reduced Gaussian grids, and spectral coefficients can be found at https://confluence.ecmwf.int/display/CKB/ 
ERA5%3A+What+is+the+spatial+reference.

3 The polar circumference of Earth is 40,008.8 km, or 111.13 km per degree.

https://confluence.ecmwf.int/display/CKB/ERA5%3A+What+is+the+spatial+reference
https://confluence.ecmwf.int/display/CKB/ERA5%3A+What+is+the+spatial+reference
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for wind energy purposes as it provides wind speed  
estimates at several levels across the rotor diameter,  
for those willing to deal with transforming from   
the native format.

Deep Convolutional Neural Networks  
for Downscaling NWP Output

Recent advances in machine learning techniques for 
computer vision have inspired a new class of methods  
for the post-hoc downscaling of NWP outputs. These 
methods promise to reduce the burdensome computa-
tional requirements of high-resolution NWP simulations 
while maintaining high-quality data outputs. If these 
methodologies can be proven to work well, they will  
enable the production of higher resolution and longer 
time series of weather input data suitable for power  
system modeling applications, as well as ensembles  
of these datasets that capture the uncertainty of the 
weather inputs and therefore allow electricity system 
studies to model sensitivity to this uncertainty.

Deep convolutional neural networks (CNNs) have  
been recently shown to excel at a wide range of computer 
vision tasks, including generative models. Convolutional 
kernels are designed to match the dimensionality and 
structure of image, video, and NWP simulation data, and 
the convolutions are repeatedly layered to extract and 
process data features at both large and small scales.  
The result is a powerful nonlinear parametric model that  
can learn physical phenomena such as the momentum 
balance for wind flows on a gridded hypercube in much 
the same way that finite-difference or finite-volume 
methods operate in NWP models. 

In practice, a major problem is that a naïve convolutional 
network can exhibit regression to the mean in the form 
of blurring when producing forecasts or enhancing the 
resolution of data. Statistically, this may be a reliable  
output for the convolutional network that will minimize 
its objective function, but it greatly reduces the practical 
value of the data. One solution to this problem is  
adversarial training with generative adversarial networks 
(GANs), where a generative model must produce data 
that are not only conditionally accurate but also   

sufficiently realistic to fool a discriminative network.   
For downscaling data with GANs (often called super- 
resolving), the generative network is trained to produce 
an enhancement of the low-resolution input data that 
the discriminator believes is similar to real data, while 
simultaneously minimizing the numerical deviation  
from a corresponding true high-resolution dataset.  
This method has been shown to be effective in creating 
highly realistic enhancements for many types of data. 

GANs with deep convolutional networks have only  
recently been applied to the task of downscaling NWP 
data but have already shown considerable promise with 
high-quality physics-based validation of the outputs 
(Stengel et al., 2020). To the knowledge of this project 
team, only a single public dataset has been published  
at the time of this writing that leverages GANs to 
downscale climate data, in this case a precipitation  
dataset from CMIP6 (Hess et al., 2022).4 However,  
several wind datasets are known to be in development 
that leverage GANs to do a final spatio-temporal  
enhancement on coarse NWP data instead of running 
the NWP down to the final desired resolution. The  
benefit of this hybrid NWP+GAN approach is a  
significant reduction in computational costs compared  
to what would be required by a full high-resolution 
NWP simulation (estimated at more than two orders  
of magnitude in compute time savings).

The main drawbacks of using GANs for downscaling  
are that this requires significant investment in machine 
learning expertise, machine learning–specific computing 
infrastructure, and high-quality training data, and  
can result in a loss of methodological interpretability  
including the possibility for data outputs that do not  
respect physical constraints. This last problem is clearly 
the most concerning, as low-quality data with poor  
physical constraints could compromise power system 
planners’ ability to accurately predict and plan for future 
system needs. The methods described above have the  
potential to greatly benefit the renewable energy and 
meteorological communities, but rigorous validation 
needs to be of the upmost priority. Statistical bench-
marking, validation against ground-truth observations, 

4 See the World Climate Research Programme’s Coupled Model Intercomparison Project at https://www.wcrp-climate.org/wgcm-cmip.

https://www.wcrp-climate.org/wgcm-cmip
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and careful examination of physical data characteristics 
like turbulence should all be regular practice when  
implementing these methods.

Data Produced for Solar Generation  
Calculations

Satellites contain instruments that measure the reflection 
of solar radiation within the atmosphere and the emission 
of infrared radiation by it. Several factors including the 
presence of water vapor, clouds, and the temperature  
profile all impact these measurements, and through  
complex model algorithms these measurements can  
be used to make inferences about the properties of the 
atmosphere that result in the measurements and/or 
about irradiance at the surface. The methods can be used 
specifically to produce irradiance measures, as is the case 
for the National Solar Radiation Database (NSRDB), or 
in conjunction with NWP models where the assimilation 
process uses the measurements to improve the initial 
condition and then the model determines the evolution 
of the surface irradiance properties.

Irradiance data produced by NWP models are subject  
to many of the same caveats regarding model resolution 
that have been highlighted for wind data. In addition, 
radiation calculations are computationally expensive  
because they model all the reflection, absorption,  
emission, and scatter of both longwave and shortwave 
radiation throughout the atmosphere and by the ground. 
Because of this computational intensity, they are usually 
performed at longer time step intervals than other  
model calculations. For example, the calculation may  

be performed as infrequently as every 30 to 60 minutes, 
although every 5 to 15 minutes is more common. This  
is important, because short-interval irradiance data  
in some NWP datasets may be static or interpolated  
between radiation calculation periods even if other fields 
are updated more frequently. Also, most NWP models 
only need to calculate global horizontal irradiance (GHI) 
as part of the modeling radiative processes and may not 
calculate direct normal irradiance (DNI) and/or diffuse 
horizontal irradiance (DHI). However, many modern 
models (for example, WRF-Solar) have options that  
allow GHI at the ground to be calculated as frequently 
as the regular model time step. They also have options 
that allow direct irradiance at the surface to be calculated. 
From this, DNI can be calculated, and together with 
GHI, DHI can be deduced.

The NSRDB has 4 km grid spacing, which is reasonably 
good, but a finer grid is better, especially when dealing 
with smaller clouds. The National Center for Atmospheric 
Research has developed the MAD-WRF model   
(Multi-sensor Advection Diffusion Weather Research 
and Forecasting) for intra-day forecasting applications,  
which uses satellite observations (and surface-based  
ceilometer observations, where available) to correct the 
cloud and other model fields at initialization ( Jiménez  
et al., 2022).5 It inserts clouds where the model has  
none (and estimates the level(s) at which to add   
cloud and modify other model fields accordingly) and 
eliminates clouds where the satellite shows that none  
exist. Application of newer techniques like this will  
further improve irradiance data in future datasets.

5 See https://ral.ucar.edu/solutions/products/mad-wrf.

https://ral.ucar.edu/solutions/products/mad-wrf
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