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Full and Summary Versions  
of the Weather Dataset Report

This overview of meteorology fundamentals for 

power system planners, modelers, and others is 

Section 2 in the report Weather Dataset Needs for 

Planning and Analyzing Modern Power Systems.  

We have published it as a stand-alone document 	

to accompany the summary version of the report, 

for readers of the summary who wish to delve  

more deeply into datasets and models used in 

power system planning studies.

Weather Dataset Needs for Planning and Analyzing 

Modern Power Systems was produced by a project 

team convened by the Energy Systems Integration 

Group to assess the gaps in existing weather  

data used in power system planning, and outline  

a process for producing ideal weather datasets  

for planning studies for increasingly weather- 

dependent electric power systems. The report 

provides details on what is needed and why,  

outlines the status of and gaps in existing data  

and methods, and describes an approach to 

building a solid, long-term planning solution.

The full report, summary report, executive 	

summary, and fact sheets can befound at https://

www.esig.energy/weather-data-for-power-system-

planning. 

https://www.esig.energy/weather-data-for-power-system-planning
https://www.esig.energy/weather-data-for-power-system-planning
https://www.esig.energy/weather-data-for-power-system-planning
https://www.esig.energy/weather-data-for-power-system-planning/
https://www.esig.energy/weather-data-for-power-system-planning/
https://www.esig.energy/weather-data-for-power-system-planning/
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This meteorology overview, together with the full report, summary 

report, and other related materials, is available at https://www.esig.
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This document originates from the ESIG report Weather 
Dataset Needs for Planning and Analyzing Modern Power 
Systems and is meant to accompany the summary version 
of that report, providing an overview of the nature of 	
meteorological data available for use in power system 
planning. 

—————————

It is important for users to be aware of the challenges 
when applying weather data to power system planning 
studies. Today’s available observations are generally too 

sparse to be used for renewable generation estimates, 	
and data from weather models often used as a proxy for 
observations have limitations that need to be understood 
to estimate their impact on the results of power system 

modeling. Further, simple models that are sometimes 	
used to synthesize the wind and solar profiles for a given 
day based on observed predictors like temperature may 	
appear to produce a long time series that looks as though 
it reflects reality quite well; however, careful validation will 
usually reveal a poor match with reality, especially when 
one looks at coincident combinations of different variables 
across a region. There is an urgent need for accurate, 	
long-duration, chronological weather datasets for use 	
in power system analyses.

Power systems span continents, with weather events in 
one corner of the grid having an impact on operations 
hundreds of miles away. Therefore, analyzing how weather 
will impact the electricity system means knowing, 	

Need for Accurate, Long-Duration, 
Chronological Weather Datasets for 
Power System Studies

https://www.esig.energy/weather-data-for-power-system-planning
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with a reasonable degree of certainty, the evolution	
of weather in time and space that impacts electricity 	
system 	supply (generation), demand (load), transmission, 
and distribution.

Accurately representing the state of a modern electricity 
system, where wind and solar generation are distributed 
over wide areas and often far from load centers, requires:

•	 Knowledge of the weather variables driving the 	
generation potential at the location of every weather-
driven generator, as well as every potential generation 
location if portfolio expansion modeling is being 	
conducted

•	 Knowledge of the weather variables driving demand 
at load centers

•	 Details of weather affecting other system assets, for 
example, weather that may cause thermal generator 
derates or outages or changes to the transmission 	
or distribution system. In addition, the hydrological 
state needs to be known if there is significant  
hydro generation.

accurately represent the correct chronological evolution 
of the weather, as this will impact how they are managed 
(for instance, how storage is charged and discharged). 
Because many power system analysis tasks attempt to 
evaluate future portfolios of weather-driven generation, 
including determining where those generators should be 
built, the weather data need to be known not only at the 
location of current generators, but all other plausible 
generator locations.

Synthesizing Weather Datasets with  
Models: Why Do It and Why Is It Difficult?

When available, direct observations are the most 	
accurate way to characterize atmospheric variables. 	
However, such an archive is not available, and it would 
be impractical to build, as it would require a much denser 
network of atmospheric measurements than currently 
exists, with instruments every two or three kilometers in 
some locations. This would be prohibitively expensive to 
build and maintain. In any event, it would take at least a 
decade of gathering observations before anything close 
to a representative archive would be available.

As a result, models are used to fill in the temporal	
and spatial gaps. These range from simple models, often 	
developed by power systems engineers with little or no 
meteorological training, to highly sophisticated physics-
based weather models involving millions of lines of code 
and running on the world’s most powerful supercomputers. 
Some of the latest artificial intelligence methods are 	
also starting to be deployed in conjunction with physics-
based models, to reduce the enormous computational 	
requirements of running the physical models at high 
spatial resolution.

Simple models are easy to understand but usually 	
inaccurate. On the other hand, physics-based models 
tend to produce data that are much more accurate, but it 
is important to understand that synthetic data produced 
this way can still contain large errors even when they 
look realistic. In addition, expert knowledge is required 
to understand the inherent uncertainties in the modeling 
process, because the same weather model can produce 
vastly different output depending on how it is configured. 
The addition of artificial intelligence can further  
obfuscate how data are derived.

Long records are crucial to capture the range 
of atypical weather combinations that produce 
weather-related risk, and because the number 
of variables increases, the range of atypical 
combinations that produce risk also grows 	
and requires longer records to capture.

Planners use historical time series of weather records 	
to project likely future scenarios of supply and demand, 
adjusting for known or predicted changes in both. Power 
system studies, especially resource adequacy analysis, 	
require many years (ideally several decades) of chrono-
logical weather data that capture the range of potential 
weather variables affecting load, resource availability, and 
forced outages. Long records are crucial to capture the 
range of atypical weather combinations that produce 
weather-related risk, and because the number of variables 
increases, the range of atypical combinations that produce 
risk also grows and requires longer records to capture. In 
addition, energy-limited resources (such as storage and 
flexible demand) create the requirement that the weather 
data not only be physically consistent in space, but also 
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Models that synthesize data for use in power 
systems analysis ideally should capture the 
physical and dynamical relationships between 
weather variables and produce weather states 
that are physically plausible, evolve realistically 
in time and space, and produce distributions  
of conditions like those that are observed. 

The atmosphere has many variables, including wind 
speed and direction; temperature; pressure; water vapor 
concentration (humidity); hydrometeor concentration, 
phase, and size (cloud droplets, rain drops, cloud ice, hail, 
snow); aerosol type, concentration, and size; incoming 
solar radiation; and outgoing infrared radiation. Each 
variable interacts with the others and responds to charac-
teristics of the Earth’s surface: altitude, slope, reflectivity, 
roughness, temperature, moistness, etc. The relationships 
among all of these factors are highly non-linear: multiple 
different variables influence one another, and changes 
may be muted or amplified in different circumstances. 
However, these relationships follow well-defined physical 
laws and are not random. This creates a dynamic, con-
stantly changing environmental system with an almost 
infinite number of possible states with some variables 
changing rapidly over small distances. 

Like the atmospheric system, the power system is also 
interconnected in time and space. Events occurring in 
one part of the system impact others and evolve in time. 
This is also true of the interactions between the two 	
systems (e.g., a change in wind speed at the location 	
of a wind generator affects the evolution of the weather 
elsewhere and changes the electricity system state). 
Therefore, each state has a specific impact on supply, 	
demand, and other weather-influenced components 	
of the electricity system.

Therefore, models that synthesize data for use in power 
system analysis ideally should capture the physical 	
and dynamical relationships between weather variables 
and produce weather states that are physically plausible, 
evolve realistically in time and space, and produce 	
distributions of conditions like those that are observed. 
A primary motivation of this document is to help users 
of synthetic data better understand how difficult this  
is and to communicate the limitations these challenges 	
often confer onto synthetic data.

Importance of Understanding the Types  
and Sources of Data Uncertainties

The difference between an observation and reality 
(“truth”) is mainly a function of the measurement 	
uncertainty of the instrument used to take the observation. 
However, the difference between synthetic weather data 
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and truth, in addition to being subject to uncertainties 	
in all the observations used in the modeling process, is 
mostly a function of the modeling method. Therefore, 
synthetic weather data have much more inherent 	
uncertainty than weather observations. This is intuitive 	
to most users when simple models are used, but it is also 
true of data that are synthesized by complex numerical 
weather prediction (NWP) methods, including reanalysis 
and reforecast datasets (discussed in detail shortly), which 
are widely used. While these methods use observations 
as inputs and produce detailed outputs with realistic 
weather patterns that reflect the input observations, the 
uncertainty of model output data is not similar to that 	
of direct meteorological observations. In addition, the 
uncertainty in synthetic data produced using physics-
based models is not uniform in time and space, between 
different weather regimes and geographies, or for differ-
ent configurations of the same model. At the time of 
writing, this is not fully understood even by many savvy 
power system modelers, and it is almost never acknowl-
edged in reports communicating the analysis of power 
system modeling that utilizes these inputs.

Furthermore, it must be remembered that few synthetic 
model data have been robustly validated against observa-
tions, in large part because in many cases such validation is 
not possible because the modeling was performed specifi-
cally to fill gaps where observations were unavailable. 	
It is not correct to assume that if model output is similar 
to an available observation in one part of the model 	
domain, that output in other parts of the domain will 
also be accurate. 

This is not to say that synthetic weather data are not 	
useful. When model configurations are thoughtfully 	
designed to produce output for use in subsequent power 
system modeling, it is possible to produce valuable data. 
However, it must be understood that these data have 

much more inherent uncertainty than those coming from 
weather observations. As a result, regardless of the source 
of synthetic weather data, validation and uncertainty 
quantification are essential steps to ensure that invalid 
conclusions are not drawn from studies that utilize 	
synthetic weather inputs.

The following discussion gives a basic description of 	
the different sources of weather data for power system 
modeling. It is designed to help non-meteorologists 
make the best use of the guidance given in Weather 	
Dataset Needs for Planning and Analyzing Modern Power 
Systems (summary report) and be able to intelligently 	
use weather inputs in power system modeling. This 	
discussion covers different types of weather observations, 
ways in which weather data can be synthesized using 
models, and the pros and cons of different approaches. 	
It describes how model implementation and config-	
uration can impact the output data, explains why this 
might matter for different applications, and discusses	
the importance of validating model data. More detailed 
information on these subjects can be found in the 	
appendix.

Regardless of the source of synthetic weather 
data, validation and uncertainty quantification 
are essential steps to ensure that invalid 	
conclusions are not drawn from studies that 
utilize synthetic weather inputs.

The uncertainty in synthetic data produced 	
using physics-based models is not uniform in 
time and space, between different weather 	
regimes and geographies, or for different 	
configurations of the same model.

https://www.esig.energy/weather-data-for-power-system-planning
https://www.esig.energy/weather-data-for-power-system-planning
https://www.esig.energy/weather-data-for-power-system-planning
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Weather Observations

Weather observations are usually the most precise 
way to quantify atmospheric conditions and 
should be used wherever practical; however, 	

observations at the necessary locations or across the 	
required time period often are not available for assessing 
weather impacts on the electricity system. Therefore, 	
observations are usually used to validate and determine 
the uncertainty of model data and/or to bias-correct the 
data by identifying systematic relationships between 
model output and truth.

Weather observations are recorded by instruments 	
that measure quantities such as temperature, pressure, 
humidity, wind, precipitation type; cloud type, level, 	
and coverage; and visibility. For in situ observations, 	
the measurement device is physically located where the 
observation is taken, and for remotely sensed observations, 
the instrument is physically removed from the locations 
being observed, such as on orbiting satellites.

In situ measurements are appealing, as their uncertainty 
and quality are usually easy to quantify and the instruments 

are cheap relative to remote-sensing devices; however, 
their spatial coverage is limited and tends to be clustered 
around population centers. Examples of in situ instru-
ments include thermometers, anemometers, precipitation 
gauges, and barometers. In situ temperature measure-
ments, typically taken at airports, have historically 	
been the primary dataset used to assess the impact of 
temperature on electricity demand. Such records typically 
span several decades, and sometimes more than a century. 
In situ measurements are also taken at wind and solar 
facilities, but these records are much shorter, and the 	
data typically are not available for input into power 	
system modeling applications (see Box 1, p.6).

Remotely sensed data are a crucial input to models 	
that are commonly used to produce datasets for power 
system analysis today and going forward. Remote-	
sensing instruments either observe atmospheric data 
from somewhere distant from the measurement location 
(known as passive sensing) or send out a signal and 	
observe the interaction of the signal with the atmosphere 
(known as active sensing). Remote-sensing instruments 



METEOROLOGICAL DATA FUNDAMENTALS FOR POWER SYSTEM PLANNING    ENERGY SYSTEMS INTEGRATION GROUP              6    

B OX 1 

Observations Made at Existing Renewable  
Resource Facilities

Most existing renewable resource facilities in the U.S. are 
equipped with instruments to collect meteorological data, and 
observation archives for these facilities would be very valuable 
for validating and bias-correcting model data. These facilities’ 
data collection is done in part because the Federal Energy 	
Regulatory Commission (FERC) Order 764 requires that trans-
mission operators be provided with temperature, wind speed 
and direction, and atmospheric pressure from each wind 	
generation facility on their systems and be provided with 	
temperature, atmospheric pressure, and irradiance from each 
solar generation facility, to aid in power generation predictions 
used in system operations. Many other countries have similar 
requirements. However, these data are usually not made public 
and so cannot be used for power system modeling studies. One 
result of this is the paradoxical situation where reconstruction 
of past generation estimates for planning is less exact than 
forecasting of future generation for operations.

Data are usually not made public and so cannot 
be used for power system modeling studies, 	
resulting in a paradoxical situation in which 	
reconstruction of past generation estimates 	
for planning is less exact than forecasting 		
of future generation for operations.

For analyses of electricity systems for planning studies, multi-
decadal records are needed covering all possible current and 
future generation sites. Because most renewable generation 
facilities have been operational for under a decade, even if 	
they were available, observational records are not long enough 
to fully capture the distribution of weather-driven generation 
outcomes. In addition, data at operational plants are not always 
a good proxy for generation at future plants more than a few 
miles away. Thus, the only current way to produce the required 
data is to use models. However, broad access to weather 	
archives for existing weather-driven power plants is necessary 
to validate and bias-correct model data. Further, access 		
to power and availability archives would allow much better 	
generation estimates to be produced from model-synthesized 
weather data. For these reasons, the project team strongly 	
recommends policy changes to improve overall access to 	
observation archives for existing weather-driven power plants.

can gather data from large areas or volumes 	
either by having a wide field of view or by 	
scanning. Examples are cameras (passive sensors) 
and weather radars (active sensors). Modern 
remote sensing has revolutionized NWP, which 
requires the best possible estimate of the state 
of the atmosphere to forecast future states and/
or synthesize a more detailed picture of the 
weather than is available from observations 
alone. More details about in situ and remote-
sensing observations can be found in the 	
appendix.

While observations are typically the most 	
reliable measure of atmospheric conditions, 
they have major drawbacks.

•	 Observations are typically spatially sparse 
and often located in places that are not rep-
resentative of the important meteorological 
properties driving supply and demand 	
across a region. For example, many surface 
observing stations are located at airports, 	
and those in populated areas tend to be the 
best maintained. This means the temperature 	
data may be useful for developing relation-
ships with load, but wind and solar data 	
are unlikely to be representative of remote 
regional wind and solar plants.

•	 The instruments used by different observing 
networks are of vastly different quality and 
are maintained to different standards; quality 
control can be very tedious. One should not 
assume that one temperature, wind, or other 
measurement is as accurate as the next.

•	 Remotely sensed data are often voluminous 
and complex. They may require expert pro-
cessing and interpretation, and measurements 
are often not uniformly organized in time 
and space. The sensing devices are typically 
expensive.

•	 Data discontinuities and biases can result 
from instrument updates, updated instrument 
calibrations, station relocation, and even 	
environmental changes around the obser-
vation (e.g., new buildings or increased 	
shading by trees).
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Given that the network of observations is 		
insufficient to provide a representative view 	
of generation potential for current and future 	

renewables, the observations we have need to be 		
augmented with model-synthesized data. This section 
explores the limitations of simple models and of the 	
sophisticated NWP and machine learning methods used 
to produce more comprehensive datasets. More detailed 
information about NWP can be found in the appendix.

Modeling the Atmosphere’s  
Complex Behavior

Because of the complex nature of the atmosphere, simple 
statistical models using variable(s) observed at one site 
(for example, temperature) are rarely able to estimate 
other variables at the same site, let alone at other locations. 
Any suggestion that such modeling is possible should be 
viewed with deep skepticism in all but the simplest cases. 
However, while the atmosphere is complex, its evolution 
in time and space does follow well-defined physical laws 
related to conservation of energy, momentum, and mass, 
and these laws can be described with mathematical 	
equations. Solving these equations is the basis of 		
physics-based modeling, which is widely used to produce 
synthesized weather data for a range of uses, including 
power system analysis.

In some cases, such as in the production of irradiance 
data for the National Solar Radiation Database (NSRDB), 
models are diagnostic and use observational data to infer 
(diagnose) an estimate for the value of a related quantity. 
An everyday example of a diagnostic model is seen in a 
mercury thermometer. The thermometer measures the 
expansion of mercury, and the diagnostic model converts 
this to temperature. But most physics-based models used 
to synthesize atmospheric data are prognostic: if the state 

of the atmosphere is known at many locations, such 
models can estimate the state of the atmosphere at other 
locations and other times. This is the realm of NWP 
models, commonly known as weather models or weather 
forecast models. While predicting the future state of 	
the atmosphere is the most familiar use of NWP to 	
the public, NWP models can also be used together 	
with observations to estimate a denser array of historical 
meteorological data than is available from observations 
alone. NWP enables the production of datasets that 	
are representative of the distribution of past weather 
conditions concurrently impacting wind, solar, and load 
and that capture the chronological evolution of these 
conditions in a realistic way. 

Data produced by NWP models adhere to the physical 
laws governing atmospheric motions and processes and 
are produced on convenient regular geographic grids, 
with even temporal spacing. The distribution of each 
variable in time and space and its relationship to every 
other variable is consistent with these laws, which is 	
important for producing chronological time series data 	
of variables that represent the evolution of plausible 
weather scenarios. This means the data meet many 	
of the requirements for use in modern power system 

While NWP models can provide reasonable 
estimates, even they are far from perfect, 	
and their output should not be viewed as a 
near-perfect representation of truth. Many 
factors associated with the input data and 
model configuration affect these models’ 	
output model, which can deviate significantly 
from reality.

Model Data
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modeling where wind and solar generation is broadly 
dispersed. However, as discussed below, while NWP 
models can provide reasonable estimates, even they are 
far from perfect, and their output should not be viewed 
as a near-perfect representation of truth. Many factors 
associated with the input data and model configuration 
affect these models’ output model, which can deviate 	
significantly from reality.

Simple Statistical Models

An estimate of the meteorological conditions at a 	
particular location is often needed because there are gaps 
in an observing record or because the required variable 	
is not measured. Simple statistical models are often 		
employed to fill such gaps in the observed record by 	
using correlations of the available observations at the 	
site of interest and observations at a nearby location to 
predict the missing data. These models can be useful for 

minimal data filling or for extrapolating a record using 
data from a nearby site with a longer time series, but it 	
is critical that their validity and uncertainty be evaluated 
carefully, because such models rarely capture the range of 
possible outcomes and can produce false and misleading 
data that will impact downstream analysis. One easy 	
way to check the validity of simple statistical models is 	
to withhold some of the data from the dataset used to 
establish the relationship and check how well the 	
model predicts the withheld data.

An example of a simple statistical model is “measure, 
correlate, and predict” (MCP), which is frequently used 
in wind resource assessment. Here, a (usually linear) 	
correlation is developed between observations at an air-
port or other nearby observing location that has a long, 
good-quality meteorological record, and observations 
measured at a prospective renewable resource site. The 
relationship is used to put the data from the resource 	
assessment measurement campaign into the context of 
the longer climate record to allow production estimates 
to be corrected up or down. If a good correlation can be 
established between the two observations, this method 
can work reasonably well to normalize average annual, 
monthly, and (with a strong correlation) daily output of 	
a short measurement campaign (for example, two years) 
to the longer-term average. MCP is often applied with 	
a long-term reference of about a decade. Because the 	
climatological norm is considered as requiring 30 years 

It is critical to carefully evaluate the validity 
and uncertainty of simple statistical models, 
because these rarely capture the range of 	
possible outcomes and can produce false and 
misleading data that will impact downstream 
analysis.
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to capture, most, but not all, of the average monthly 	
variability can be captured in this way. 

MCP-like methods are also sometimes used to synthesize 
load time series. Here, measurements from two sites are 
correlated, and a simple transfer function is developed 
that allows periods without observations to be estimated. 
Because load and temperature are generally strongly 	
correlated, this application is typically useful if applied 
with careful validation.

Other models apply simple empirical rules, for example, 
the assumption that a constant wind shear in the lower 
atmosphere can be used to extrapolate the wind speed 	
at one height using data at another height. Similar rules 
can estimate temperature using constant lapse rates (the 
change in temperature with height). Such empirical rules 
can be useful in some applications, but do not produce 
the required level of accuracy in others. Therefore, it is 
important for a data user to know when empirical rules 
have been applied and understand the nature and impact 
of the uncertainty introduced.

Another example of the use of statistical models is to 
predict the daily profile of wind and solar generation 
based on the temperature regime influencing load for 
days that occur around the same time of year; this use 	
is problematic. For instance, the assertion may be that 	
if a warm January day has a particular solar shape, solar 
generation on other warm January days for which no 	
solar data exist will have the same daily profile. This 
seems intuitively compelling; however, the reality is 
much more complex. Cool summer days can be sunny, 
hot summer days can be cloudy, and, as anyone living 	
in the U.S. Midwest knows very well, the coldest winter 
days are often blazingly sunny. When one includes 	
additional coincident variables like wind speed, the 	
situation quickly becomes complex, especially if corre-
lations are being attempted between the conditions 	
of two or more variables at different sites.

Statistical and empirical models like MCP typically 	
relate one or two predictors (e.g., input variables like 
wind and temperature at location A) to the output 	
variable (e.g., wind at location B) in a way that the 	
output variable being predicted varies in a simple linear 
fashion with the input variable (first order, as opposed 	
to quadratic, cubic, or higher order). These models are 

rough empirical approximations not representative of 	
all the physical laws at play. They can produce apparently 
reasonable distributions with average errors but lead to 
very large errors in any given hour. This is problematic 	
if the large error correlates with a weather condition that 
causes electricity system stress. Another problem with 
statistical and empirical models is overfitting, where a 
complex relationship between multiple variables is found 
within a sample, but validation outside of the sample 
shows that the apparent prediction capability is not 	
present.

Models that attempt to reproduce the wind 	
and solar profiles for a given day based on 	
predictors like temperature may appear to 	
produce a reasonable long time series where 
the range of output variables looks as though it 
reflects reality quite well. But careful validation 
will usually reveal a poor match with reality, 	
especially when one looks at coincident 		
combinations of variables impacting load and 
wind and solar generation across a region.

Models that attempt to reproduce the wind and solar 
profiles for a given day based on predictors like temperature 
may appear to produce a reasonable long time series 
where the range of output variables looks as though it 
reflects reality quite well. But careful validation will usually 
reveal a poor match with reality, especially when one 
looks at coincident combinations of variables impacting 
load and wind and solar generation across a region. 

Numerical Weather Prediction Models

While NWP models are best known as the basis of 
modern-day weather forecasts, NWP methods are also: 
(1) the core component in datasets utilized as weather 
inputs for power system modeling, and (2) used for global 
climate modeling designed to understand the potential 
consequences of anthropogenic climate change. NWP 
models mathematically represent the physical laws 	
governing the weather and can be used together with 	
observations to estimate a denser array of historical 	
meteorological data than is available from observations 
alone. (See Box 2, p. 10, for three definitions of “forecast.”) 
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1	  A weather analysis is a process that takes available weather data and uses it together with knowledge of the laws of physics to estimate the state of the 	
atmosphere and is the first step in the forecasting process. It can be done manually, but today it is typically done using computer codes. Reanalysis is the 
term used for a similar process that occurs after the fact when all of the possible data are available, including what would have been the future state of the 
atmosphere. Through the use of sophisticated computer codes, reanalysis reconciles all the data from observations and past, current, and future model 	
estimates in an effort to produce the most accurate weather analysis possible.

resolution downscaling of both reanalysis data and global 
climate model (GCM) output. In what follows we intro-
duce the basic principles of NWP modeling, some of the 
model configuration choices that have the most influence on 
the applicability of NWP data to power system modeling 
tasks, and gridded weather analysis data, reanalysis data, 
and downscaling. Warner (2011) provides an excellent 
summary of best practices for NWP modeling. Other 
recent works that provide useful summaries of NWP 
modeling for renewable resource applications include 
Haupt et al. (2017, 2019) and Jiménez et al. (2019).

Power system modelers using NWP output must have 	
a basic knowledge of things that impact the accuracy 	
of the data they are using and the situations where larger 
errors might show up—the devil is in the details. Power 
system analyses where weather risk is high and important 
for decision-making should probably engage a meteo-
rologist who is well versed in NWP to explore potential 
pitfalls and ensure that erroneous conclusions are not 
drawn from downstream power system modeling results 
because of imperfect weather inputs. Above all, one 
should always remember that garbage in will result in 
garbage out. Having enough knowledge to know when 
to question the quality of weather inputs is essential.

Basic NWP Principles

Atmospheric processes adhere to physical laws that can be 
described mathematically as a system of regular and partial 
differential equations. If we perfectly describe these laws 

Power system analyses where weather risk is 
high and important for decision-making should 
probably engage a meteorologist who is well 
versed in NWP to explore potential pitfalls 	
to ensure that erroneous conclusions are 	
not drawn from downstream power system 
modeling results because of imperfect 		
weather inputs.

B OX 2 

Three Definitions of “Forecast”

The term “forecast” is used here in three distinct ways:

•	 To predict what is expected in the operational 
time frame (e.g., day-ahead or hour-ahead) to	  
conduct reliable and efficient market and power 
system operations.

•	 To predict how a time series of a parameter 	
such 	as load may change in future years based 
upon 	historical relationships of weather and past 
outcomes, and the expected overall change in  
the parameter’s magnitude.

•	 To estimate a time series for a weather variable 	
for a period in the past at locations for which no 
observational data are available, by using available 
weather data and a model. Typically, numerical 
weather prediction (NWP) models are used, and 
the main variants of this process are reforecasting 
and reanalysis, which are covered in detail in 	
Section 3 of the full report, “Weather Inputs 	
Needed for System Planning.” While the data being 
predicted are for a period in the past, the models 
are the same as those used for weather forecasting, 
hence the term “forecast” is often used by meteo-
rologists to refer to this modeling of periods in the 
past. However, because the term “forecast” has a 
strong connotation of “future” for most people, in 
this document and the full report we strive to use 
terms other than forecast when referring to the 
past—such as reforecast, reanalysis, modeled,  
and simulated—to minimize confusion.

However, there are many sources of uncertainty and 	
approximation related to the data used as inputs to the 
NWP process and the specific model used.

NWP methods can be used to produce other types of 
datasets that are commonly used in power system planning, 
including reanalysis data1 (defined in the footnote and 
described in more detail below), as well as in the high-

https://www.esig.energy/weather-data-for-power-system-planning
https://www.esig.energy/weather-data-for-power-system-planning
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mathematically and we perfectly know the state of the 	
entire atmospheric system at a given time, then we can, in 
theory, determine the entire atmospheric state at all future 
times. This situation is known as an initial value problem. 
NWP is the branch of atmospheric science dedicated 	
to determining the initial value as accurately as possible 
and solving the initial value problem for subsequent times 	
by representing as closely as possible the physical laws 
governing the motions and processes that are occurring, 
using mathematical equations that can be solved using 	
numerical methods. NWP models are physics-based 	
models (sometimes referred to as physical models) 	
that perform this modeling on computers. They require 
extensive and accurate data inputs (the initial value) 	
and apply these inputs to the physics-based equations to 
model the atmosphere, including the development and 
decay of weather systems and their movement across a 
geographical area. NWP models can either be run over 	
the entire globe or over a particular region of interest. 

By discretizing the three-dimensional model domain into 
grid cells (i.e., grid volumes),2 NWP models represent and 
predict values for numerous variables (including temperature, 
wind speed, and solar irradiance) at every grid cell in the 
domain, regardless of whether or not an observation exists 
for that grid cell. Because the modeling is physically based, 
where interpolation/extrapolation of observations leads to 
initial conditions that are not consistent with the physics 
of the system in some locations (typically due to a lack of 
data), the model will tend to evolve the fields to remove 
the physical imbalance; this adjustment process will 	
usually produce a more accurate representation of the 	
atmosphere than was available by simple interpolation 	
of available observations. This is a powerful feature of 
NWP that is particularly useful in regions of complex 	
topography where fields may vary rapidly with distance 
and observations are sparse.

NWP models can be run at different grid spacing in 	
both the horizontal and the vertical, which determines the 
granularity (or resolution) of the geography and attendant 
physical processes that the model can simulate. A high-
resolution grid is critical for power system studies so that 
the weather impacting existing and potential future wind, 

solar, and other plants can be accurately determined, along 
with concurrent weather impacting load. These weather 
data can then be used in power system models to evaluate 
how weather will affect the concurrent performance of 
these resources and loads on the power grid so that 	
studies can identify potential points of weather-driven 	
reliability risk.

It is reasonably intuitive that we cannot measure the 	
state of the atmosphere perfectly even at one location 	
(due to measurement uncertainty), let alone everywhere. 
In addition, we do not have the computer power necessary 
to represent every turbulent eddy or cloud droplet explicitly 
even if these details could be measured. Moreover, numerical 
methods are inherently approximations because they deal 	
with finite differences versus the infinitesimal differences of 
pure calculus. Therefore, perfectly predicting weather variables 
at any given time or place is not possible. In addition to these 	
limitations in our ability to model the atmosphere, the laws 	
governing the atmosphere’s behavior involve non-linear inter-
actions among many variables. Systems like this are highly 	
sensitive to small changes in the initial conditions, and their 	
behavior is inherently chaotic. Small perturbations in the 	
initial state ultimately result in large differences in the future 
state. The metaphor that a butterfly flapping its wings in 	

2	 NWP models track the state of the atmosphere at a finite number of grid points. The closer together these grid points are in the horizontal and vertical, the 
higher the resolution of the model. It takes at least three grid points to represent a simple feature on the Earth’s surface or in the atmosphere. An intuitive 
example of the representation of terrain is that a V-shaped valley requires three grid points to resolve, and a U-shaped valley requires four, so if the grid 	
points are 1 km apart, the smallest valley that can be represented is 2 km wide. All features below this scale are not explicitly resolved. 
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3	 The atmospheric system was where chaotic systems were first explored. Edward Lorenz showed in his famous 1972 talk, “Predictability: Does the Flap of a 
Butterfly’s Wings in Brazil Set off a Tornado in Texas?,” that for such a system, while the exact present determines the future, the approximate present does 
not approximately determine the future (Lorenz, 1972).

4	 Planetary waves (also known as Rossby waves) can be thought of as broad undulations in the jet stream, and they drive the large-scale weather patterns 	
(periods of storminess and quiescence). There are typically four to eight waves (ridges and troughs) spanning the globe. They result from the rotation of the 
Earth and are modified by temperature gradients as well as interactions with surface features and other processes that move energy around.

Africa can affect the development and path of a hurricane 	
in North America is apt.3 

The amount of time a modeled system remains predictable 
depends on how accurately the initial state is measured, the 
dynamics in the system, and the length scales of interest. 
Therefore, since measurements can never be performed every-
where or with perfect accuracy, and since those observations 
cannot be perfectly represented by analytical functions, even 
with infinite computer resources, there are fundamental limits 
to the accuracy of the predictions that NWP models can 
make. That is, while the data are useful, they are imperfect, and 
these imperfections must be quantified and considered when 
the data are used as an input to power system modeling. 
Predictability depends on the scale of the weather 	
features of interest, on the order of minutes for small-

scale phenomena a few meters across (such as dust 	
devils), to a few weeks for the planetary waves4 encircling 
the Earth that are thousands of kilometers across and 
drive large-scale weather systems ( Judt, 2018, 2020).

Figure 1 (p. 13) provides a simplified representation of 
how atmospheric data are represented in an NWP model 	
and the process of iteratively running such a model. All 
NWP modeling starts with an initial condition that is a 
three-dimensional representation of the atmosphere. The 
initial condition is produced by taking a first guess of the 
atmospheric state (also known as the background field) 
from a prior model run (usually a short-range prediction 
of one, three, six, or twelve hours) and adjusting it using 	
as many sources of observational weather data as possible, 
including surface observations, balloon soundings, radar 
data, ground- and space-based remote-sensed information, 
and aircraft data. This is a complex process that incorporates 
the observations into the model in a way that considers 
both model and observational uncertainty and produces 
an initial condition that is physically consistent with the 
model topography. For regional NWP models, lateral 
boundary conditions must also be specified at regular 	
intervals (typically every one to six hours) for the entire 
duration of the simulation, from either a global model 	
or a larger regional NWP model. These lateral boundary 
conditions are another source of model error; eventually 
this “boundary creep” can contaminate results throughout 
the domain. See Warner, Peterson, and Treadon (1997) 	

In addition to the limitations in our ability 	
to model the atmosphere, the laws governing 
the atmosphere’s behavior involve non-linear 
interactions among many variables. Such 	
systems are highly sensitive to small changes 
in the initial conditions, and their behavior 	
is inherently chaotic. Small perturbations  
in the initial state result in large differences  
in the future state.
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5	 A common misconception is that the integration time step is the same as the output time interval. This is rarely true, although the integration time step 	
represents the minimum output interval. The integration time step is a function of the model spatial resolution (with higher resolution requiring a short time 
step) and is usually a few seconds to a few minutes. The output interval just defines how frequently the atmospheric state is archived.

for a more in-depth treatment of lateral boundary 		
conditions for NWP modeling. 

After weather observations are assimilated (data assimilation 
to be explained further below), the atmospheric state at 
the next time step is determined by numerically solving 
the governing equations at each grid point. This process 
is repeated until the user-configured model end time 	
is reached. Gridded model output is written to a file at 
regular intervals.5 The prediction accuracy depends on 
the accuracy of the initial condition, how many time step 
iterations are performed, and how accurately the atmo-
spheric conditions can be represented in the model. The 
latter is a function of the model resolution (for example, 
a fair weather cumulus cloud that is 500 m across cannot 
be represented in a model with 10 km grid spacing) and 

of how well the physical processes can be represented 
and solved in computer codes, which itself is a function 
of the accuracy of the numerical methods used to solve 
the governing equations and whether those equations 
can even be represented at the scales being modeled.

The Impact of Model Resolution

Understanding the importance of model resolution 	
is crucial, as small-scale features can have a strong 	
impact on the weather that drives wind generation, solar 
generation, and load. Static features in the real world—
such as steep valleys or sharp transitions from forest to 
grassland or ocean—that occur at scales smaller than 	
the grid spacing will not be accurately represented in 	
the model. Consequently, the effects of these features 	
will be represented inaccurately or not at all. Similarly, 

Illustration of the cyclical NWP process. Gridded weather data output from a prior NWP iteration becomes the background 	
field (or first guess) to the next iteration. This first guess is then nudged toward observations, while keeping it consistent with 	
differences between how the model configuration represents the physical world. The NWP calculations are then performed 	
and the result post-processed according to the use case, while a short-range forecast feeds the next cycle.

Source: Justin Sharp.

F I G U R E  1 
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fine-scale weather phenomena like sharp warm or cold 
fronts or small thunderstorm cells will be different in 
model space than in reality. Differences between model 
data and reality are particularly important to consider 	
in regions with complex (i.e., hilly or mountainous) 	
topography. This is because the smaller-scale weather 
phenomena are a projection of the larger-scale weather 
pattern onto the topography and associated surface 	
characteristics (like gaps, passes, slopes, and roughness). 
Therefore, where model topography is considerably 	
different from actual topography, even if the large-scale 
weather pattern is correctly modeled, the projection of it 
onto the smaller scale will be consistently incorrect, and 
modeled values may be very different from those of reality. 

Horizontal resolution. Figure 2 (p. 15) provides a vivid 	
example of the impact of model resolution on model 	
topography. This poorly represented terrain in turn 	
profoundly affects how local-scale weather features such 
as the flow through mountain gaps (known as gap flows), 
sea breezes, and mountain-valley circulation evolve in the 
NWP model in response to larger-scale weather systems. 
In the western U.S., these phenomena drive the power 
output of many gigawatts of wind energy facilities, and 
areas of clouds and clearing associated with mountain 
ridges could impact vast swaths of solar generation, 	
especially in the future.

Figure 2 shows the model representation of topography 
in the Pacific Northwest at horizontal grid spacing 	
of 36 km, 12 km, 4 km, and 1.33 km. This includes the 
Columbia Gorge, where the actual elevation is less than 
100 m at river level, with steep sidewalls rising rapidly to 
the crest of the Cascade Mountains at a height of over 
1000 m. Mount Hood (3429 m) and Mount Adams 
(3743 m) lie to the south and north of the gap. Several 
other large volcanoes are located in this region, as are 

several mountain ranges and a large inland basin. The 	
key message here is that at low resolutions, many of the 
topographic features like tall mountains, steep canyons, 
and river drainages are not properly represented; thus, 
the weather they drive in reality will diverge from the 
weather that develops in the model. For comparison, 	
a configuration with a grid spacing of 1.33 km has 	
784 grid points and 729 grid cells within the same 	
geographical area as a single 36 km grid cell represented 	
by four corner points.

At a grid spacing of 36 km (which is close to the 	
resolution of the frequently used ERA5 reanalysis data-
set (Fifth-Generation European Center for Medium-
Range Weather Forecasting (ECMWF) Atmospheric 
Re-Analysis of the Global Climate), the gross features 	
of the terrain are present, including smoothed versions 	
of the mountains and rivers; however, tall volcanoes 	
and mountain ranges are barely captured. At 12 km grid 
spacing, the largest peaks can be seen as only smooth 	
areas of high terrain, and, similarly, low passes appear as 
smooth valleys. 	Details of the Columbia Gorge and the 
coastal range can be seen. At 4 km grid spacing, most of 
the major mountain gaps, tall mountains, and valleys in 
the main mountain ranges can be seen, and the important 
lowlands are represented as being near sea level as in 	
reality. It is not until a 1.33 km grid spacing is used that 
the Columbia Gorge is resolved accurately. Resolving 	
the Gorge is crucial to correctly predicting the wind 	
generation from the large number of wind farms at 	
its eastern terminus.

Figure 3 (p. 16) shows hypothetical cross-sections 
through terrain similar to that in Figure 2. Using 3 km, 	
9 km, and 27 km grid spacing, it illustrates the profound 
differences in surface elevation and terrain features at 
different resolutions. The divergence between each model 
resolution and reality affects elevation-dependent values 
such as surface temperature and precipitation phase, but 
more importantly, model resolution affects how meteoro-
logical phenomena like cold pools, downslope winds, 	
and upslope precipitation evolve in the model. 

Model resolution has similar impacts on land surface 
characteristics with the placement of urban, forest, 	
farm, and desert areas all becoming progressively 	
more accurate as resolution increases. Each type of 	

Where model topography is considerably 	
different from actual topography, even if the 
large-scale weather pattern is correctly 		
modeled, the projection of it onto the smaller 
scale will be consistently incorrect, and 		
modeled values may be very different from 
those of reality.
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land surface has different values defining properties like 	
surface roughness, albedo, emissivity, and heat capacity, 
properties that have a profound influence on how the 
real and modeled atmosphere respond to the surface.6 

For example, surface roughness dramatically impacts 	
the low-level wind speed, wind shear, and turbulence. 	
Albedo, emissivity, and heat capacity change the rates 	
of surface heating and cooling, affecting low-level 	

Topography represented in the four progressively finer-scale domains used for the University of  
Washington’s Department of Atmospheric Sciences’s operational NWP model. The four domains have  
a grid spacing of 36 km (top left), 12 km (top right), 4 km (bottom left), and 1.33 km (bottom right). 

Source: University of Washington. Available at the web page Pacific Northwest Mesoscale Model Weather Forecasts:  
Information (https://a.atmos.washington.edu/wrfrt/info.html).
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6	 Albedo is the diffuse reflectivity of a surface. Surfaces with an albedo of 1 reflect all the sunlight that hits them, while those with an albedo of 0 absorb it all. 
Emissivity is the effectiveness of a material for emitting thermal (visible light and infrared) radiation. Heat capacity is the amount of heat supplied to a unit 
mass of material to achieve a unit temperature rise.
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7	 An inversion is an atmospheric layer where temperature increases with height. Inversions often occur in winter in basins and valleys because surface cooling 
on the valley sides causes cold air to drain down the valley floor. Without significant daytime heating it is difficult to remove the cold layer, as the air above it 	
is warmer and does not mix down into it.

inversion (and the calm conditions that come with it) 
that will sometimes be present in reality.7 In other cases, 
for example, where a deep valley exists in reality but the 
model resolution is only sufficient to represent a shallow 
mountain pass, the model may produce the gap winds 
that occur in reality but their magnitude is very muted 
compared to reality. Both examples directly impact the 
accuracy of wind generation estimates. The errors in the 
way the weather evolves will also propagate downstream 
and grow as the simulation progresses, potentially 	
impacting other regions.

Figure 4 (p. 17) provides an illustrative example, again 
from the Pacific Northwest, of the impact of resolution 
on the wind field. Just as a large boulder in a river creates 	

temperature and therefore mixing of the low-level 	
air, which in turn impacts the vertical distribution of 
near-surface wind speed, temperature, and humidity.

While it is typically understood that lower-resolution 
models will not properly predict the details of air flow in 
complex topography, it is often mistakenly believed that 
these models will predict the broad features of the flow 
and that this output can then be statistically corrected. 
However, if the model topography cannot properly 	
support conditions that cause a phenomenon, the 	
phenomenon may be absent altogether from model 	
output. For example, in Figure 3 there are no valleys 
whatsoever in the 27 km resolution cross-section; there-
fore, it is impossible for the model to create the valley 

A 3 km representation of 
this mountain range has five 
peaks and four valleys.

At 9 km, narrow peaks and 
valleys are lost and the crest 
is lower.  The complexity 
behind the crest is lost and 
becomes a wide valley.

At 27 km, the range becomes 
a simple peak with a smooth 
up and downslope on either 
side of the crest, and the 
crest shifts eastward.

The top plot shows a cross-section of hypothetical complex topography represented at 3 km grid 	
spacing. The middle plot uses the average of sets of three 3 km points for each 9 km point. In the 	
bottom plot, three 9 km points were averaged to get to each 27 km point. 

Source: Justin Sharp.

F I G U R E  3 

Hypothetical Cross Sections Showing Model Representations  
of a Complex Topography at Different Grid Spacing
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The output from a 1 km Weather Research and Forecasting 
(WRF) simulation (top) clearly shows mountain wake and wave 
activity to the east of Mount Hood, whereas the output from the 
30 km ERA5 dataset (bottom) for the same hour in April 2010 
does not show this activity.  

Sources: Iberdrola Renewables (top), and Sharply Focused with data from  
the European Center for Medium-Range Weather Forecasting (bottom).
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a wake behind it where the flow is slower or may even 
reverse, Mount Hood creates a significant wake in the 
atmosphere, and in the right conditions this wake can 
persist for tens of kilometers and impact many wind 
plants downstream. The top of Figure 4 shows the wind 
field simulated with an NWP model running at 1 km 

grid spacing so that it has sufficient resolution to resolve 
both the wake and the atmospheric waves (manifested 	
in the figure as periodic lines of stronger wind) created 
by narrow ridges. Areas of stronger winds are also seen 	
behind some slopes and associated with width changes 	
in the Columbia Gorge. These structures were first 	
indicated in high-resolution NWP simulations like this 
one and confirmed to exist through analysis of turbine 
winds.8 Their presence was subsequently evaluated 	
in detail in the Wind Forecast Improvement Project 	
Part 2 (WFIP2) field campaign (Draxl et al., 2021). 

However, the bottom of Figure 4 shows the output 	
resulting from a much lower grid spacing of about 30 km. 
The difference is dramatic, because simulations at this 
resolution cannot capture the detailed structures seen 	
in the 1 km simulation. The topography that causes the 
phenomena does not exist at this resolution, and the grid 
spacing is insufficient to represent the rapidly varying 
wind field. The waves observed in reality and in 1 km 
simulations create significant mixing of the lower atmo-
sphere and impact the evolution of the airflow. Therefore, 
a lower-resolution model, in addition to being unable to 
resolve the features of the terrain, will not capture the 
impact these features have as the model proceeds, causing 
the model output to diverge significantly from reality.

Vertical resolution. Vertical resolution is also important. 
Vertical gradients of atmospheric properties like wind 
speed, temperature, and humidity tend to be largest near 
the surface, as this is where most of the sun’s energy is 
transferred to the atmosphere during the day and where 
most cooling occurs at night. The surface is also where 
most evaporation of water occurs and where topography 
and land surface characteristics have the largest impacts 
on weather. Therefore, higher vertical resolution is 	
needed near the Earth’s surface, but, in the interest of 
model efficiency, lower vertical resolution can be used 
higher in the atmosphere. A hybrid coordinate system 	
is therefore used in NWP models that follows the 	
terrain near the surface and gradually migrates toward a 
non-terrain-following coordinate away from the surface, 	
as illustrated in Figure 5 (p. 18). This allows the strong 
surface gradients to be resolved regardless of the elevation 
of the terrain while reducing the resolution needed  
farther above the surface.

8	 Observed by Justin Sharp and meteorologists at Iberdrola Renewables.
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F I G U R E  5

Illustration of a Hybrid Coordinate System Used in NWP Models
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Vertical gradients of atmospheric properties are largest near the surface, necessitating higher resolution there. However, the 	
surface does not have constant elevation, and there is also no need to perform calculations below ground. Therefore, a hybrid 	
coordinate system is used which follows the surface elevation at ground level and gradually relaxes with height above ground to  
a constant-pressure level coordinate away from terrain. The blue area is a cross-section profile of the terrain, and the bold black line 
references sigma = 1, which represents the model surface level. Each orange line above represents a sigma level at which properties of 
the atmosphere are calculated. The levels follow the terrain most closely near the ground regardless of pressure (a proxy for elevation 
above sea level) and in this example are closest together near the ground, which is how they are configured in actual NWP models.  

Source: Justin Sharp.

Figures 6 and 7 (p. 19) provide a schematics of a three-
dimensional grid illustrating terrain-following coordinates 
in 3D and the high-level aspects of performing NWP 
(solving the forecast equations with the available com-
puter resources). Many details in the topography, surface 
properties (water, grass, woodland), and weather features 
(like clouds) cannot be resolved at the grid spacing used 
(where data only exist at the intersections of the grid 
lines), illustrating the importance of resolution. Figure 7 
also shows how the weather stations (white and red icons) 
do not coincide with the grid points. Subgrid-scale  
parameterization schemes are used for processes that 	
cannot be explicitly modeled, discussed next.

The Impact of Parameterizations

Even as computer resources have allowed for a dramatic 
increase in the resolution at which NWP models can 	
be run, there are still physical processes relevant to 	
power system planning that cannot be modeled, as they 
occur at scales smaller than the grid scale of even the 
highest-resolution model configurations, are too poorly 
understood or too complex to model explicitly, or occur 
too rapidly. These processes that cannot be explicitly 	
modeled must be parameterized.

Figure 8 (p. 20) shows physical processes and features 
that need to be parameterized by NWP. The average	  
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F I G U R E S  6  A N D  7

Illustrations of How Features are Discretized in an NWP Model Domain

Incoming
Solar Radiation

Surface Radiation

3-D Grid Box

Ocean

Land

Mountains

Figure 6 shows how some or all of the planetary domain is broken down into grid cells in an NWP model, while Figure 7 zooms  
into a small sub-domain. This shows how model grid cells follow the terrain near the surface, how a single grid cell does not  
perfectly represent everything within it, and how weather observations do not typically coincide with model grid points.

Sources: Figure 6: COMET® website at http://meted.ucar.edu/ of the University Corporation for Atmospheric Research, sponsored in part through cooperative 
agreement(s) with the National Oceanic and Atmospheric Administration. © 1997–2023 University Corporation for Atmospheric Research. All Rights Reserved; 
Figure 7: meteoblue (https://content.meteoblue.com/en/research-education/educational-resources/weather-model-theory/model-domain)

(or bulk) effects of these processes can be determined 	
using reasonable statistical relationships that are based on 
well-validated empirical observations or using sub-model 
processes that, while physics-based, determine the bulk 
average properties within the grid cell. For instance, the 
physics defining how raindrops form and fall to earth 	
is well understood and can be modeled explicitly, but 
modeling the condensation, growth, and coalescence 	
of every cloud droplet and raindrop is impractical for 
NWP purposes. Instead, a parameterization—also 
known as a scheme—is used which is essentially a 	
sub-model that simulates a particular meteorological 
process. In the case of the formation of cloud droplets, 	
it is known as the cloud microphysics parameterization. 
The scheme provides a physically sound approximation 
of the bulk effect of the physical processes occurring 	
in the formation of clouds and precipitation. 

Because parameterizations are approximations, there 	
are often several different versions that perform the 	
same task, and each version may contain adjustable 	
coefficients, settings, or parameters that can be tuned 	
to make the approximation more accurate in different 
circumstances. For example, different schemes, and 	
different parameter settings within a scheme, might  
work better in different seasons of the year, in different 
regions, or at different model resolutions. Sometimes 
schemes performing some of the different tasks in 	
Figure 8 (p. 20) may be designed to work well together, 
while others should not be used concurrently. Others 
sacrifice accuracy in favor of lower computational 	
overhead; this is common for operational forecasting 	
applications where timeliness is vital. The choice 		
of parameterizations and corresponding parameter 	
settings within a scheme is usually based on informed 	

http://meted.ucar.edu/
https://content.meteoblue.com/en/research-education/educational-resources/weather-model-theory/model-domain
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A summary of the various parts of NWP modeling that are  
parameterized. 

Source: COMET® website at http://meted.ucar.edu/ of the University 	
Corporation for Atmospheric Research, sponsored in part through cooperative 
agreement(s) with the National Oceanic and Atmospheric Administration.  
© 1997–2023 University Corporation for Atmospheric Research. All Rights 
Reserved.

F I G U R E  8 

Commonly Parameterized Components of NWP

1.	 Incoming Solar Radiation
2.	 Scattering by Aerosols  

and Molecules
3. 	Absorption by the Atmosphere
4.	 Reflection/Absorption by Clouds
5.	 Emission of Longwave Radiation 

from Earth’s Surface
6.	 Condensation
7.	 Turbulence
8.	 Reflection/Absorption  

at Earth’s Surface
9.	 Snow

10.	Soil Water/Snow Melt
11.	 Snow/Ice/Water Cover
12.	Topography
13.	 Evaporation
14.	Vegetation
15.	 Soil Properties
16.	Rain (Cooling)
17.	 Surface Roughness
18.	Sensible Heat Flux
19.	 Emission of Longwave  

Radiation from Clouds

experimentation and validation, and the consequences 	
of the choices can be profound. It is important for data 
users to at least be aware that the choice of parameter-
izations can impact output biases.

Figure 9 (p. 21) shows the sensitivity of hub-height 	
wind speeds to changes in parameter settings related 	
to turbulence and surface roughness.9 The model config-
uration is identical in both cases, including the choice 	
of parameterization schemes. The only modification 	
is in the choice of settings for parameters related to 	
turbulence and surface roughness. The upper plot shows 
line plots of wind speed for many different combinations, 
while the lower plot translates these wind speeds to 	
estimates of wind generation. Note that the spread 	
in wind speed solutions is significant, but is greatly 	
amplified by the cubic relationship between wind speed 

and power output. If completely different schemes 	
were used, versus just fine-tuning the parameters, the 	
impacts could be even larger.

Data Assimilation

In the data assimilation component of the NWP 	
modeling cycle (see Figure 1, p. 13), the model first-guess 
field—the best initial guess at the state of the atmosphere 
usually obtained from a prior short-range NWP forecast 
—is adjusted to produce an initial condition that is as 
close to reality as possible. This process uses observations 
that are collected throughout the atmosphere, including 
at the surface. As illustrated by the three weather stations 
shown in Figure 7 (p. 19), these observations typically 	
are not collocated with the model grid points. The data 
assimilation process melds the observations with the first-
guess field in a way that nudges the first guess toward 
observational truth and takes care of spreading the 	
influence of the observation to nearby grid points, while 
at the same time maintaining the mathematical balance 
of the model’s representation of the Earth’s surface and 
atmosphere, which has less detail than reality. This is 	
one of the most difficult-to-grasp aspects of NWP.

In short, we want the model initial condition to represent 
real-world conditions seen in observations as closely as 
possible, but at the same time it is important for the new 
initial condition to be as close to mathematical balance 
as possible in model space, and not lose important details 
about the state of the atmosphere that prior model runs 
have inferred. Models contain a less detailed representation 
than reality of things like terrain slope, elevation, and 
surface attributes like roughness, albedo, and heat capacity. 
These differences between model space and real space 	
are largest close to the surface, especially where the real 
surface details are complex. Observations are generally 
more accurate than the model first guess, but the first 
guess contains details that have developed in the prior 
NWP cycle as the dynamic fields (temperature, pressure, 
wind speed and direction, etc.) have adjusted to the 	
static model fields (topography, slope, land surface 	
characteristics, etc.) in order to balance the physical 
equations. These details are also most important near 	
the surface and where surface details are complex. It may 

9	 The parameter settings tune the Mellor-Yamada-Nakanishi-Niino (MYNN) planetary boundary-layer parameterization (Nakanishi and Niino, 2006) and MM5 
surface-layer parameterization (Jiménez et al., 2012). The surface layer and planetary boundary-layer (PBL) parameterizations are codes that handle the 
complex atmospheric physics associated with exchanges between the surface and the atmosphere, including things like exchange of heat and moisture with 
the surface and interactions between the free atmosphere and the layer impacted by the surface. 

http://meted.ucar.edu/
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Traces of wind speed and wind power for many different iterations of a model run with everything held 
constant except parameters related to turbulence and surface roughness. The upper plot shows the 
range of wind speeds generated by numerous model runs. The lower plot translates these wind speed 
differences to estimates of wind generation. The wider spread seen in the lower plot shows the profound 
impact of parameter choice when the cubic relationship between wind speed and power output amplifies 
these differences.

Source: Yang et al. (2016).

F I G U R E  9 

The Different Outcomes When Using Different Parameter Settings  
with the Same Model Configuration

Rated Speed

Cut-In Speed

Rated Power (1.68 MW)

00:00                12:00                00:00                12:00                 00:00                12:00                00:00                12:00                 00:00

5/7/11                                          5/8/11                                           5/9/11                                         5/10/11                                          5/11/11

be the case that, for instance, a temperature observation 
in a valley might be more accurate than the model first 
guess; however, that observation should not carry much 
weight because it represents a phenomenon that is at  
a scale the model cannot represent.

Thus, data assimilation is about much more than creating 
a new initial condition by interpolating available observa-
tions onto a grid: the assimilation process seeks to strike 
a balance between pushing initial condition features that 
drive weather at scales the model can represent toward 
observed truth, while maintaining the details that have 
been inferred by the model in regions where observations 
are sparse. In addition, assimilation accounts for differences 
that are due to the different level of detail the model 	

resolution can represent relative to reality. For example, 	
if the model surface elevation is higher than the real 		
elevation where an observation was taken, the temperature 
expected in the model will be different from that observed 
in reality. If these differences between the model first 
guess and observations are naïvely pushed toward the 
observations, then the model initial condition may be 
moved far from physical balance (in model space), and, 
just like the real Earth system, a physics-based model 
will respond to remove imbalance when model integration 
starts. If the imbalances are large, then phenomena that 
are physically unrealistic (like strong winds that would 
not occur in reality) will develop and the model may 
even become unstable and cause the simulation to  
fail (i.e., crash).
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NWP Principles Takeaways

Power system planners often need data of a higher 	
spatial resolution than are available from observations 
and need these data to be representative of the real con-
ditions that are occurring in time and space, including 
how different weather variables coincide. NWP provides 
a way to synthesize such data. Because many of the 	
meteorological features driving weather variables that 
impact supply and demand, especially those determining 
renewable resource generation, are driven by topography 
or small-scale weather features, the NWP modeling 
must either be conducted at sufficiently high resolution 
or use a post-processing method (described later in 	
this section). 

starting point is depends on past model runs and on 	
the amount and quality of available observations. Data 
assimilation takes a representation of the atmosphere 
produced by a prior model run and applies observations 
to it to produce the initial condition. This process is very 
complicated and is a source of significant uncertainty 
that varies in time and space.

Even when using high-resolution configurations, some 
processes that need to be modeled still occur at scales 
finer than the model grid scale. These are represented by 
subgrid-scale parameterizations. Many different choices 
of parameterizations and associated settings exist, and 
their choice in the model configuration can greatly 	
impact the model accuracy. Furthermore, some work 	
better in some locations, seasons, and/or weather  
regimes than others.

Some grasp of these factors is necessary when utilizing 
data produced by NWP processes to ensure that the data 
are applied appropriately versus being considered as a 
simple proxy for observations.

NWP Applications Relevant to Synthesizing 		
Power System Weather Inputs

It is widely recognized that the basis for modern day 
weather forecasting is the regular collection and assimila-
tion of data into NWP models and then running those 
models to produce a forecast of the weather expected in 
the coming days, and this use case is deployed to produce 
source data for operational load and generation forecast-
ing. NWP models can also be used to produce estimates 
of weather conditions for many power system analysis 
tasks. This section describes the key applications of NWP 
modeling that are relevant to power system applications.

Producing Operational Forecast Data

NWP models are the foundation of all operational 
weather forecasting products including forecasts produced 
for the power sector. While the operational application 	
is not the main focus of the report from which this 	
document is extracted, a short description is given so 	
that the process can be compared to how NWP is used 
to produce other datasets that are the report’s central 
concern. Additionally, there are some instances in 	
which archived operational NWP has been utilized 	

While the structures in high-resolution models 
can look very compelling, they are difficult 	
to validate due to the small number of 		
observations that are available relative 		
to the number of grid points.

Running at higher resolution is usually the more accurate 
approach. However, it is not a panacea. First, even if 	
vertical resolution is held constant, the computational 
resources needed to increase horizontal resolution scale 
by at least the third power because the number of required 
time steps increases by the same factor as the resolution 
change to keep the model computationally stable. Hence, 
a 1 km simulation takes at least 27 times the resources of 
a 3 km simulation, and takes 27,000 times the resources 
of a 30 km simulation. The volume of output data also 
expands by the power of two, as does time to output 
them. And while the structures in high-resolution 	
models can look very compelling, they are difficult to 
validate due to the small number of observations that 	
are available relative to the number of grid points. 	
This is especially true in complex terrain, where the 	
meteorological fields are most in need of validation but 
observations tend to be sparse. Ultimately, a compromise 
must be made between the benefits of higher resolution 
and the computational and data storage resources that 
are available.

In addition, regardless of resolution used, NWP models 
depend on an accurate initial condition. How good this 



METEOROLOGICAL DATA FUNDAMENTALS FOR POWER SYSTEM PLANNING    ENERGY SYSTEMS INTEGRATION GROUP              23    

for power system analysis, and a few words need to	  
be said about this.

When producing NWP output for operational forecasts 
of future weather, the first few forecast hours need to 	
be produced as fast as possible, as they are only valuable 
if they represent a forecast of the future; if they are not 
produced quickly, they become an estimate of conditions 
in the past. This means making compromises regarding 
when to cut off ingestion for the data assimilation cycle 
so that a good enough initial condition can be produced, 
and the process of integrating the NWP model to produce 
estimates of future atmospheric conditions can begin. 
Choices also need to be made about model resolution 
and parameterizations that prioritize model speed as 	
well as accuracy. Lastly, choices of output variables 	
and output frequency need to be made that provide the 
best overall value for all end users, not just those in the 
power sector.

Operational forecast models are regularly updated 	
to incorporate the latest enhancements in NWP 		
techniques and increasing computer power. Thus, 	
the model configuration is not static in time, 		

meaning that output resolution, skill, and biases are 	
not constant.

Factors like early data cut-off, configurations set up for 
speed, and dissemination designed to be for all generic 
users mean that NWP data produced for operational 
weather forecasting by national forecast centers (e.g., 	
the National Oceanic and Atmospheric Administration’s 
National Centers for Environmental Prediction (NOAA/ 
NCEP) in the U.S.) are not ideal for use in power system 
modeling. For power system uses we would like weather 
inputs to be the best possible representation of the 	
state of the atmosphere, with variables and output level 
selected to match sector needs and model configuration 
being held constant to prevent unexpected changes in 
model biases.

Producing Reanalysis Data 

One of the most widely used types of atmospheric data, 
including for power system analysis, is reanalysis data. 
Reanalysis datasets have many strengths. However, they 
are often misunderstood as being able to serve as a proxy 
for observations, and thus are often misused. 
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Reanalysis datasets are produced by NWP modeling 	
systems configured specifically to produce as accurate a 
representation of the atmosphere as possible for a given 
model resolution and the available input data across long 
periods. Unlike using NWP to produce a prediction of 
the future, reanalysis seeks to produce a spatially and 
temporally complete representation of conditions in the 
past by incorporating all useful observations and using 
the model physics to approximate atmospheric states 
where and when no observations are available. Reanalysis 
data provide an easy-to-use, four-dimensional represen-
tation of the state of the atmosphere, often across the 	
entire globe, using a single consistent method. The data 
are provided on regularly spaced grids, across long time 
periods (years, and often decades) at moderately high 
horizontal grid spacing (typically tens of kilometers, 
sometimes better) and moderately high temporal 	
resolution (usually one- to three-hour intervals). More-
over, all the variables output at all locations are time-	
coincident and physically consistent: the same physical 
phenomena simultaneously impact every variable, and 
the cross-correlations between the variables are captured 
in the model. Another feature of reanalysis datasets 	
is that, unlike for operational forecasts, the same 		
configuration of the model is used to produce the entire 
archive, which means modeling system skill is static. All 
of these features are important for power systems work.

However, reanalysis datasets are often misused by end 
users. Many believe that reanalysis data can be used as a 
proxy for actual observations and that they have a similar 
accuracy level. But it is crucial to understand that reanal-
ysis data are an estimate of the state of the atmosphere 
across an area, not a finite point. Reanalysis data are 	
not observations. The quality of the estimate depends on 
several factors including the quality of the model used 	

to produce the reanalysis, the configuration of parameters 
within the models, the horizontal and vertical resolution 
used in the modeling, and the quality, quantity, and 	
distribution of observations assimilated into the model. 
In addition, the representativeness of the reanalysis 	
output can differ under different atmospheric conditions 
and in different regions. As was described in the previous 
section, when weather conditions are heavily influenced 
by phenomena at scales smaller than an NWP model 
configuration can resolve (phenomena too small for 	
the model to “see”), the results can deviate substantially 
from the reality of the finite point where observations 	
are measured. While the variables are all physically 	
consistent according to the mathematical relationships 
governing the atmospheric system, this consistency exists 
at the resolution of the model and is only as good as 	
the background field and observations going into the 	
reanalysis and the ability of the model to resolve the 	
phenomena present at the resolution used.

To begin the reanalysis, the first background field used 
(the first guess of the atmospheric state) comes from 	
archived output from a high-quality operational forecast 
model’s initial condition. For example, a reanalysis data-
set beginning in 1990 would utilize an initial condition 
from 00 UTC January 1, 1990. All available observational 
data are assimilated into this analysis. Reanalysis employs 
the most sophisticated assimilation methods available 	
to produce the reanalysis field. This is usually a method 
called 4D-Var, which considers not just how observations 
vary in space, but how they vary in time and space relative 
to the model background field and relative to short-range 
model predictions forward and backward in time.10 	
Observations from about six hours either side of analysis 
time are analyzed for this purpose. The output from 	
this process is the first interval of the reanalysis. NWP 
integration then moves the reanalysis state forward to 
the next output time, for example, 01 UTC January 1, 
1990. The short-range forecast from this step then 	
becomes the first guess for the next assimilation cycle.11 
The data assimilation cycle is then repeated with appro-
priate observation archives, followed by integration to 
the next reanalysis time. The process repeats until the 	

10	An accessible introduction to 4D-Var, which is used in producing ERA-5 reanalysis data—probably the most utilized reanalysis datasets for renewable 	
energy applications—can be found at: https://www.ecmwf.int/en/about/media-centre/news/2017/20-years-4d-var-better-forecasts-through-better-
use-observations. 

11	 The short NWP integration creates fields like accumulated precipitation that are also archived.

Reanalysis datasets have many strengths. 
However, they are often misunderstood 		
as being able to serve as a proxy for 		
observations, and thus are often misused.

https://www.ecmwf.int/en/about/media-centre/news/2017/20-years-4d-var-better-forecasts-through-better-use-observations
https://www.ecmwf.int/en/about/media-centre/news/2017/20-years-4d-var-better-forecasts-through-better-use-observations
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entire dataset has been created. This usually takes months 
or years and millions of CPU (central processing unit) 
hours utilizing a supercomputer.

Raw model output from the reanalysis process is 		
archived, but the data provided to users are usually 	
processed into datasets that provide a standard set of 	
atmospheric variables on a regular grid that is typically 
mapped to a sphere on constant-pressure levels. The 
transformation process can lead to the loss of useful 	
resolution in the vertical and interpolation artifacts 	
in the horizontal grid, and expert users may want to use 
raw grids where available. See the appendix for details.

Deriving Downscaled Regional Datasets

NWP and GCM models only resolve atmospheric 	
phenomena at a scale equal to about six to eight times 
the grid resolution (Skamarock, 2004). For instance, a 	
30 km model will resolve weather features that have a 
length scale of 180 km or more, which is much broader 
than many regional-scale weather impacts. However, 
downscaling can be used to produce higher-resolution 
datasets from lower-resolution ones, although it must be 
used with care. Output produced by the low-resolution 
models can be used as input to higher-resolution NWP 
models in order to reproduce the atmospheric conditions 
present in phenomena occurring at smaller scales that 	
are driven by larger-scale weather patterns. For example, 
a low-resolution GCM can produce the strong winds 
associated with a deep low-pressure system (a large-scale 
phenomenon), but it cannot translate these winds to 	
the heavy precipitation that will result from these winds 
along a steep mountain range (a small-scale phenomenon), 
because the mountains cannot be properly represented 	
in the GCM. Examples of other small-scale phenomena 
driven by the large scale include circulations like sea 
breezes, gap winds, mountain-valley circulations, 	
thunderstorm cells, cloudiness on the windward side 	
of hills and mountains, and clouds clearing on the 	
leeward side. Some of these smaller-scale phenomena 	
are known to affect wind energy generation, especially 	
in regions of more complex terrain, and other small-scale 
phenomena impact solar generation. These phenomena 
typically occur at scales below those of most national 	
operational NWP forecast models (although this is 
changing as computer power increases) and well below 
the scales resolved by best-in-class reanalyses like the 

ECMWF’s ERA5 and the U.S. National Aeronautics 
and Space Administration’s (NASA’s) MERRA-2 or 	
any current GCMs. Downscaled NWP output is also 
produced for certain operational forecasting needs, for 
instance, fire weather and air quality, which require 	
very high-resolution modeling. 

Importantly, the process of downscaling can be applied 
to historical output, like reanalysis output for use in 
power system modeling, or to the output of GCMs. 	
The best-in-class Wind Integration National Dataset 
(WIND) Toolkit dataset from the National Renewable 
Energy Laboratory (NREL) is produced this way.

When performing downscaling, the lower-resolution 	
initial condition is first interpolated onto the higher-	
resolution model grid in a process that also adjusts 	
the meteorological fields to account for the different 	
elevations present in the higher-resolution domain. 	
Once the NWP modeling begins, the effects on the 	
initial field from the higher-resolution terrain will 	
cause the meteorological fields to realign and include 	
the impact of the finer-scale topography that causes such 
phenomena as channeling of the wind, forced lifting over 
terrain, damming of cold stable air behind narrow gaps, 
and differences in heating across slopes. This adjustment 
process is known as spin-up, and once the model is spun 
up, the output will represent the phenomena present 	
at the finer scales. 
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12	Ground truth is actual wind and solar realization measured with instrumentation, as opposed to data from a model that is estimating the quantity.

Because the area being downscaled is regional versus 
global, the weather entering and exiting the edges of 	
the domain needs to be provided to the model as it runs 
forward in time. These boundary conditions from the 
larger-scale analysis or forecast feed the edges of the 	
finer-scale domain with accurate data about the larger-
scale weather pattern. This keeps the fine-scale domain 
anchored to the larger scales that are well represented 	
in the lower-resolution data, while at the same time 	
allowing the model to fill in the smaller-scale effects 	
in a physically consistent way. In some cases (where the 
larger-scale features are trusted), scale-selective nudging 
can also be used to ensure that the larger-scale features 
within the domain do not drift during the finer-scale 
forecast run. This means the model can run for longer 
without needing to be reinitialized. This creates fewer 
seams in the model output and minimizes computation-
ally expensive spin-up time, the output from which is 	
not useful (generally the first few hours).

An example of the power of downscaling to yield more 
accurate representations of the weather fields is modeling 
in complex topography, such as the western U.S., the 	
Appalachian Mountains, or the European Alps. Better-
resolved mountain barriers will better block cold, stable 
air in the models, and better-resolved steeper mountain 
slopes can accelerate winds more in line with reality, 
which can be to speeds several times larger than seen in 
lower-resolution models. As with all NWP output, once 
the model is spun up, the resultant downscaled data 	
are physically consistent between weather variables. For 
instance, a sharp mountain barrier will be much taller 	
at high resolution and thus reduce the air flow at lower 
levels (an impact on wind speed) across a barrier, 	
compared to air flow modeled by a lower-resolution 
model. This in turn can change the temperature on 	
the downstream side of the mountain because the 	
air is coming from a different elevation with different 
atmospheric stability. At the same time, a gap or pass 	
in the mountain barrier shown in downscaled data will 
be better defined and lower in elevation, also reflecting 
reality more closely. This will create stronger winds in its 
lee, and the air immediately downstream of the gap will 
be colder than in the original low-resolution output; 	
it may also be drier and remove fog present in nearby 	

locations not impacted by the gap. These more accurate 
representations of the weather fields will result in more 
accurate estimates of the wind and solar resources in 	
the region, as well as temperature at load centers and 
weather-related outages at traditional generators. The 
more accurate representations also greatly improve 	
estimates of precipitation that occurs in steep terrain 	
that may feed a hydro system.

NWP downscaling is a powerful tool for  
providing consistent information about local 
effects and developing long time series at  
a level of detail not possible with available  
observations. However, it must be used with 
care for precisely this reason. The lack of  
observations means that only a small fraction 
of the NWP data points can be validated 
against ground truth.

NWP downscaling is a powerful tool for providing 	
consistent information about local effects and developing 
long time series at a level of detail not possible with 
available observations. However, it must be used with 
care for precisely this reason. The lack of observations 
means that only a small fraction of the NWP data points 
can be validated against ground truth,12 so it is especially 
important to make sure that the model output is validated 
where it can be to understand how well the model is 	
performing. It is also important to remember that since 
model performance will vary with weather regime, 	
validation should be more than just calculating 		
average errors.

Producing Global Climate Models

GCMs can produce datasets that represent weather 	
conditions for decades into the future. Therefore, GCM 
output is potentially useful if one wants to simulate 	
conditions affecting the electricity system in a future 	
affected by climate change, although it must be under-
stood that there are considerable uncertainties in climate 
predictions, and expert climatologists should be engaged 
to understand how large the signal is relative to the 
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13	GCMs are not only used for studies of anthropogenic climate change and can provide insight into changes due to any manner of slow changes in the  
Earth system.

14	The energy output of the sun oscillates over time in a quasi-regular and predictable way, with an average cycle from the solar minimum through solar  
maximum and back to the minimum of approximately 11 years.

model uncertainty. GCMs are, at their core, a type of 
NWP model, and like other forms of NWP output, 	
the data from these models are dynamically consistent 
across output fields. While the core atmospheric model-
ing functions of GCMs are basically the same as those 	
of other NWP models, GCMs have tighter coupling 	
to modeling of other aspects of the Earth system such 	
as the cryosphere, oceans, and atmospheric chemistry 
(including greenhouse gas concentrations), because 	
over long time frames, feedbacks between these systems 
become increasingly important. GCMs also typically 	
use much lower resolution to make long simulations 
computationally tractable, although, like regular NWP 
models, GCM resolution is constantly improving. Using 
a GCM, it is possible to create accurate representations 
of the distribution of weather over longer periods. 	
We know this because GCMs can accurately recreate 
historical distributions of, for example, temperature 	
and rainfall across broad regions. The premise of climate 
modeling is that if statistical descriptors of the past 	
climate can be simulated accurately, then simulations 	
of the future will provide insight into how those 		
distributions change as greenhouse gas concentrations 
change, and the climate warms.13 

It was noted above that the atmosphere is inherently 
chaotic and thus completely unpredictable at time scales 
beyond two to three weeks. Therefore, just like a standard 
NWP model, when a GCM is given a reasonable initial 
condition, it can accurately predict the evolution of the 
weather systems in this initial condition with some skill 
for a week or two, and, just like a standard NWP model, 
its prediction skill will fade beyond this horizon. How 
then is it possible to make predictions about Earth’s 	
future climate with GCMs? This paradox is explained by 
the fact that chaos theory states that within the apparent 
randomness of a chaotic system there are underlying 	
patterns, feedback loops, repetition, and self-organization. 
The objective when running a GCM is not to predict 	
the weather at any given time in the future, but rather 	
to predict the distribution of future weather events that 
can evolve at the scales the model simulates, for different 

Earth system conditions (like the amount of CO2 in 	
the atmosphere). 

While GCMs can potentially simulate conditions 	
affecting the electricity system in a future affected 	
by climate change, this matter is considerably more 	
complicated than it first appears, and there are several 
important caveats to understand before considering 	
using GCM output for this purpose. These caveats, 	
briefly laid out below, form the basis for why the full  
report, Weather Dataset Needs for Planning and Analyzing 
Modern Power Systems, does not focus on power system 
weather inputs under climate change.

Because there is no observational method to validate 	
the predictions of a GCM in the future, the standard 
validation process is to use GCMs to simulate conditions 
over the last century or so, using the changes that are 
known to have occurred in the atmosphere (like increasing 
CO2 and the oscillation of solar output through the 11-
year solar sunspot cycle)14 as a boundary condition. These 
simulations have been found to produce consistent and 
reasonably accurate results using many different GCMs 
(Hausfather, 2017). Once a GCM configuration is 	
validated by showing it can produce a reasonable 	
estimate of past climate, it is assumed that it can be 	
used to model many future decades for different scenarios 
(such as changing CO2 concentrations or changes in 	
atmospheric aerosols). The results from these simulations 
are compared between different GCM models, and 
where they are similar for the same changing boundary 
conditions (e.g., CO2 concentration), a higher degree 	
of confidence is ascribed to the predicted distribution 
changes.

Almost all GCMs indicate significant future warming, 
and many produce patterns of temperature and precipita-
tion changes that are similar to one another. However, 
there is much more uncertainty around how wind and 
irradiance patterns might change. Further, GCMs do 	
not run at sufficient resolution to be able to diagnose 
how large-scale changes even in fields like temperature 
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and precipitation may translate to changes at smaller 
scales in regions of more complex topography, which 	
are necessary to model for power system planning. One 
approach to examining these smaller-scale changes is 	
to use the GCM output as input to higher-resolution 
NWP models in order to downscale it as described 	
in the previous sub-section. When this is done, there 	
is again some consistency in results for temperature 	
and precipitation. However, the results of downscaling 
exercises are mostly inconclusive when examining 	
phenomena like local wind circulations and cloud cover.

Post-Processing of NWP Data

NWP output and climate projections are not free of 	
errors. Sources of error include the initial conditions 	
used in NWP models and how they are constructed 	
(observations, assimilation), accompanied by boundary 
condition errors and model physics errors. For power 	
system uses, even high-resolution model output can 	
display significant deficiencies, resulting in systematic 
biases and less weather variability than expected. For 	
example, even comparatively fine resolutions of NWP 
simulations provide an average temperature for each 	
grid box of, say, 2 km x 2 km for local scale and 20 km 	
x 20 km for a global scale, which can fail to reflect 	

variability that has important impacts for both 		
supply and demand in future power systems.

Post-processing can address some of the above deficien-
cies, by enhancing NWP or GCM output using simple 
methods such as determining and removing bias errors 
or performing more complex tasks for applications such 
as wind plant production estimates. The conversion from 
grid box to point estimates (point-based post-processing) 
or from coarse grid box to very fine grid box (grid-based 
post-processing) is called calibrated post-processing. 
Promising new machine learning methods offer an 	
advanced form of grid-based post-processing, with 	
the possibility of downscaling NWP output without 	
the large computational expense of running very high-
resolution NWP simulations.

Statistical Post-Processing

A wide range of techniques are used for post-processing. 
Regardless of the method used, post-processing should 
produce an estimate as close as possible to the truth, 
while respecting the climatological probabilities and 	
producing results that are physically consistent between 
the different meteorological parameters. Given enough 
training data (i.e., observations that can be compared 
with NWP output), these methods can improve both 
spatial and temporal representation of NWP estimates, 
but care should be exercised because the techniques tend 
to smooth the data and produce outputs that underrepre-
sent the upper and lower tails of variables like tempera-
ture, wind speed, and irradiance. In addition, the large 
amount of observational data needed to train them is 	
often not available. Thus, while statistical post-processing 
can improve NWP output accuracy by some measures, it 
can also adversely impact important aspects of the original 
data distribution that could affect results when the data 
are used for tasks like resource adequacy analysis.

A simple post-processing example is bias correction 	
in combination with a distribution correction, where 	
one corrects the current estimate with the model’s 	
bias and distribution of errors from past estimates. 	
For ensembles,15 other methods based on the idea 	
of a weather generator can be used to search for past 
simulations that are very close to the current forecast 	

15	An ensemble in the context of NWP is a set of NWP simulations utilizing different NWP models or configurations and/or slightly different initial conditions. 
The resulting sets of output can be statistically analyzed and the dispersion between them utilized to assess simulation uncertainty.
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and use the past corresponding observation as new 	
forecast, such as the analog ensemble (AnEn) approach 
(e.g., Delle Monache et al. 2013; Alessandrini et al., 
2015a, 2015b; Alessandrini and McCandless, 2020). 	
Statistical methods are relatively easy to implement 	
and apply, once the data are available and prepared.

Machine learning and other artificial intelligence 	
methods can also be used to improve NWP output. 	
The link between model and observations contains non-
linear relationships, which are difficult to capture with 
traditional statistical methods; however, using non-	
linear machine learning methods such as support vector 
machines, decision trees, and artificial neural networks, 
these relationships can be detected between observational 
data and NWP output. Once trained, machine learning 
methods can correct other NWP output. However, 	
these methods can be challenging to design, need a lot 	
of tuning and computing power, and require a significant 
amount of data to train on (ideally at least a year to 	
capture all four seasons, and preferably multiple years 	
to account for inter-annual variability).

Recent advances in machine learning are indicating that 
in the near future there is the possibility that some of 
these methods may not only be able to correct and/or 
downscale NWP output, but may, given enough existing 
NWP training data and observations, actually be able to 
produce better estimates by operating on low-resolution 
NWP output and observations than can be produced 	
using high-resolution models. While detailing these	  
developments is beyond the scope of this discussion, they 	
are likely to become very important within the lifecycle 
of the full report, and interested readers are referred	  
to McGovern et al. (2019) and Lam et al. (2022) for 
more details.

Generative Machine Learning for  
Weather and Climate Data

Recent advances in machine learning techniques for 
computer vision and generative models have inspired a 
new class of methods for the post-hoc downscaling of 
NWP outputs. Generative models can learn and sample 
virtually any conditional joint probability distribution 
such that they can produce realistic multivariate spatio-
temporal fields given some conditional input. For example, 
a generative model can be trained to produce continuous 

gridded multivariate (e.g., wind, temperature, etc.) 	
data-sets that are physically realistic across both space 
and time given a lower dimensional input such as a set 	
of point observations or a low-resolution climate model 	
dataset. These methods promise to reduce the burden-
some computational requirements of high-resolution 
NWP simulations while maintaining high-quality data 
outputs. If these methodologies can be proven to work 
well, they will enable the production of higher-resolution 
and longer time series of weather input data suitable 	
for power system modeling applications, as well as 	
ensembles of these datasets that capture the uncertainty 
of the weather inputs and therefore allow electricity 	
system studies to model sensitivity to this uncertainty.

Deep convolutional neural networks (CNNs) have 	
been recently shown to excel at a wide range of computer  
vision tasks, including meteorological applications 	
(Alzubaidi et al., 2021; McGovern et al., 2019). These 
networks are designed to the dimensionality and structure 
of image, video, and NWP simulation data. This results 
in powerful non-linear parametric models that can learn 
to emulate physical phenomena such as the momentum 

https://www.esig.energy/weather-data-for-power-system-planning
https://www.esig.energy/weather-data-for-power-system-planning
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balance for wind flows on a spatio-temporal grid, much 
in the same way that finite-difference or finite-volume 
methods execute physical equations from cell to cell 	
in NWP models. Note that this comparison between 
trained convolutional operators and physics-based finite-
difference/finite-volume methods cannot be directly 
proven for large dimensional relationships such as multi-
dimensional weather fields but can be demonstrated in 
simple 1D examples (Rackauckas et al., 2021), which 
supports the utility of these trained models in physical 
domains. The result is a learned model that can emulate 	
a physical simulation similar to an NWP but at a 	
fraction of the computational cost. 

In practice, a major problem is that a basic convolutional 
network can exhibit regression to the mean in the form 
of blurring or smoothing when producing forecasts 	
or enhancing the resolution of data. This can result in 	
an underestimation of extremes such as heavy rainfall 
intensities at small spatial scales (Ayzel, Scheffer, and 
Heistermann, 2020). One solution to this problem is 	
adversarial training with generative adversarial networks 
(GANs) (Stengel et al., 2020; Hess et al., 2022; Wang 	
et al., 2021; Rosencrans et al., 2023; Gagne et al., 2018), 
where a generative model must produce data that are 	
not only accurate but also sufficiently realistic to fool 	
a discriminative network. That is, the generative model 
produces outputs that are mathematically and statistically 
indistinguishable from NWP outputs from the 		
perspective of a sophisticated classification model. 	
For downscaling data with GANs (often called “super-
resolving”), the generative network is trained to produce 
an enhancement of the low-resolution input data that 
the discriminator believes is similar to real data, while 
simultaneously minimizing the numerical deviation from 
a corresponding true high-resolution dataset. This method 
has been shown to be effective in creating highly realistic 
enhancements for many types of data. 

GANs with deep convolutional networks have only 	
recently been applied to the task of downscaling NWP 
data, but have already shown considerable promise with 
high-quality physics-based validation of the outputs 
(Stengel et al., 2020). To the knowledge of the authors, 
only a small handful of public datasets have been 	
published at the time of this writing that leverage GANs 
to downscale historical reanalysis data or future climate 
data (Buster et al., 2023; Rosencrans et al., 2023; Hess 	
et al., 2022). However, several additional wind datasets 
are known to be in development that leverage GANs to 
do a final spatio-temporal enhancement on coarse NWP 
data instead of running the NWP down to the final 	
desired resolution. The benefit of this hybrid NWP+GAN 
approach is a significant reduction in computational 
costs compared to what would be required by a full high-
resolution NWP simulation (estimated at one to two 	
orders of magnitude in compute time savings).

The main drawbacks of using GANs for downscaling 	
are that this requires significant investment in machine 
learning expertise, machine learning–specific computing 
infrastructure, and high-quality training data, and 	
can result in a loss of methodological interpretability 	
including the possibility for data outputs that do not 	
respect physical constraints. This last problem is clearly 
the most concerning, as low-quality data with poor 	
physical constraints could compromise power system 
planners’ ability to accurately predict and plan for future 
system needs. The methods described above have the 	
potential to greatly benefit the renewable energy and 
meteorological communities, but rigorous validation 
needs to be of the utmost priority. Statistical bench-
marking, validation against ground-truth observations, 
and careful examination of physical data characteristics 
like turbulence should all be regular practice when	  
implementing these methods.
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Crucial Takeaways for Power  
System Modelers Using NWP  
and GCM Data

In summary, NWP is a complex subject with many 	
nuances. It requires expert knowledge to determine 	
what model resolution, parameterizations, and 		

parameter settings are best for the problem being solved 
and/or the best compromise between accuracy and com-
putational burden. When performing long simulations 
across broad regions, configurations that work well 	
in one region or season may perform poorly in others. 
Understanding the limitations and possible pitfalls of 	
the models’ output requires deep knowledge of NWP 
systems. Some meteorologists without deep NWP 	
backgrounds are not fully aware of these limitations and 
may recommend inappropriate usage of these models in 
power system planning. Even meteorologists with NWP 
backgrounds are sometimes unaware of how the data are 
being used and might recommend different approaches 	
if they were. It is essential to have a feedback loop 		
between power system modelers and NWP experts  

when NWP data are being used for weather inputs 	
into power system analysis.

Using data derived from NWP seems compelling 	
because their regular format and general geographical 
and temporal completeness make them easy to use. But 

Even meteorologists with NWP backgrounds 
are sometimes unaware of how the data are 
being used and might recommend different 	
approaches if they were. It is essential to 	
have a feedback loop between power system 	
modelers and NWP experts when NWP data 
are being used for weather inputs into power 
system analysis.
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16	 https://www.osti.gov/biblio/1166659/.

17	 For validations for the overall NSRDB, see https://doi.org/10.1016/j.rser.2018.03.003 and https://www.nrel.gov/docs/fy22osti/83015.pdf. For the WIND 
Toolkit, see https://www.nrel.gov/docs/fy15osti/61740.pdf and https://www.nrel.gov/docs/fy14osti/61714.pdf.

18	 https://gridlab.org/wp-content/uploads/2022/05/GridLab_California-2030-Meteorological-Deep-Dive.pdf. 

it is essential to understand that NWP data are not the 
same as observations—even data coming from reanalysis 
datasets that are often touted as suitable substitutions 	
for observations. In addition, the performance of one 
NWP model or configuration is not a predictor of the 
performance of another model or even the same model 
used in a different region, with a different configuration, 
or with different input data. Even with well-chosen 	
selections of resolution, parameterizations, and other 
configurable options, NWP models sometimes perform 
poorly. This poor performance does not occur randomly 
and is often related to specific atmospheric conditions 
and/or regions. When these factors align with weather 
situations that result in stress on the electricity system, 
the weather inputs going into power system models 		
may be poor and compromise the results. Garbage in, 
garbage out. 

Therefore, it is crucial that for any study using 		
NWP data as a proxy for observations, NWP data  
not be utilized as a black box dataset that is equivalent 	
to quality-controlled observations. Users need to have 	
at least a basic understanding of how the data were 	
produced or engage with a meteorologist who has an 
NWP background—and ideally an understanding of 
how weather data are used in power systems models—
who can guide them in whether the data are appropriate 
for the application at hand. As part of this process, to 	

ensure the appropriateness and accuracy of a modeled 	
dataset for power system planning, users should review 	
a comprehensive validation report for NWP data being 
used that has been performed within the context of 	
the power system modeling use case. If a comprehensive 
validation report is not available, such a validation should 
be performed. NREL recommends such validation be 
performed before using the WIND Toolkit data.16 	
Unfortunately, such validation is uncommon, and those 
validations that have been performed, such as for the 
overall NREL NSRDB and WIND Toolkit datasets, have 
looked mostly at bulk average statistics for a handful of 
sites and have not evaluated the dataset accuracy in the 
context of electricity system risk periods.17 It is important 
to note that these limited validations indicate significant 
differences between the NWP data and the ground 
truth; however, the results are not widely publicized. 	
For example, a narrowly targeted simple evaluation of 	
the WIND Toolkit data during a period of system stress 
in the western U.S. indicated substantial over-predictions 	
of wind energy potential in the U.S. Pacific Northwest.18 	
But such validations are not standard industry practice. 
This lack of validations is due in part to the limited 	
data availability to perform thorough evaluations and in 
part to a lack of understanding of the need. The project 
team recommends the development of a best practices 
guide for validating weather inputs prior to use, and 	
suggests that this be an integral part of any project 	
that is developed to address the need for better 		
weather input datasets.

It is crucial that for any study using NWP data 
as a proxy for observations, NWP data not be 
utilized as a black box dataset that is equivalent 
to quality-controlled observations. Users need 
to have at least a basic understanding of how 
the data were produced or engage with a 	
meteorologist who has an NWP background—
and ideally an understanding of how weather 
data are used in power system models—		
who can guide them in whether the data 	
are appropriate for the application at hand.

https://www.osti.gov/biblio/1166659/
https://doi.org/10.1016/j.rser.2018.03.003
https://www.nrel.gov/docs/fy22osti/83015.pdf
https://www.nrel.gov/docs/fy15osti/61740.pdf
https://www.nrel.gov/docs/fy14osti/61714.pdf
https://gridlab.org/wp-content/uploads/2022/05/GridLab_California-2030-Meteorological-Deep-Dive.pdf
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Appendix: Weather 201

In-Situ Observations

In-situ observations provide measurements specific to 
their location. In-situ measurements are appealing, as 
their uncertainty and quality are usually easy to quantify, 
the instrumentation is relatively cheap, and they often 
have long records. However, their spatial coverage is 	
typically limited.

In-situ measurements have been taken around the world 
for centuries, and long records are available at some sites. 
Examples include thermometers, precipitation gauges, 
and barometers. Uncertainty and accuracy depend on the 
instrument specifications, placement, and maintenance. 
Most in-situ observations are fixed in space and are 	
typically surface-based, with towers used to gather 	
measurements from multiple near-surface levels. Another 
form of in-situ measurement uses radiosondes, an instru-
ment package carried aloft by a weather balloon. These 
instruments report the instrument location as part of 	
the data collected.

Remotely Sensed Observations

Remote-sensing instruments either observe atmospheric 
data from somewhere remote from the measurement 	
location (passive sensing) or send out a signal and observe 
the interaction of the signal with the atmosphere (active 
sensing). This means that remote-sensing devices can 
gather data from large areas or volumes by scanning 
across them. Examples include cameras (a passive sensor) 
flying on orbiting satellites and weather radars (an active 
sensor that sends out a pulse of radio waves and 		
measures the reflected signal).

Remotely sensed data from a vast array of instruments 
located both on satellites and on the ground are now 	
recorded in large quantities, often at high spatial and 

temporal resolution. Examples are weather radars, 	
atmospheric sounders, and atmospheric imagers. 		
These instruments usually measure at multiple locations 
along a line or within a volume. Often, the instruments 
are space-based, in which case they may either be in 	
geostationary orbits, which always have the same field of 
view of the Earth and thus provide frequent observations 
within their view, or be in an orbit that transits different 
parts of the planet, thus covering a broader field of view 
but with less frequent observations at any given location. 
Remotely sensed data have revolutionized our ability to 
diagnose the four-dimensional state of the atmosphere 
and are a critical input to models that produce widely 
used gridded datasets derived from numerical weather 
prediction (NWP) and other types of modeling. 

Some major complexities are associated with remotely 
sensed data that need to be understood if one is using 
the data directly without expert guidance. The quantities 
measured sometimes have complex relationships to the 
atmospheric variables that are derived from them and 
require significant processing to arrive at the atmospheric 
data. Further, atmospheric conditions can affect sensitivity, 
accuracy, and range. For example, weather radar measures 
atmospheric reflectivity, and this is a function of precipi-
tation type among other factors, and heavy precipitation 
will limit range.19 The instrument response may be quite 
nuanced; therefore, care is needed in interpretation of 
data. For example, lidar and radar, both of which can 	
be used to remotely sense wind, can “see” farther in clear 
conditions; however, if the air is 	exceptionally clean, 
these instruments will not be able to sense the wind 	
conditions. For scanning instruments, the volume being 
sensed increases with distance from the radar and the 
average resolution decreases, because the scan produces 
ever larger concentric circles. Similarly, visible satellite 
imagers can detect the tops of clouds, but the same 

19	 Rain has a much higher radar reflectivity than snow, except melting snow produces more reflection. Large hail produces even larger returns than rain or snow.
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clouds prevent the imager from seeing clouds at 		
other levels.

The Impact of the Era of Satellite Remote 
Sensing on Weather Observations and 
Modeling

The year 1978 is generally considered the beginning 	
of the satellite era for weather prediction purposes. 	
Continuous monitoring by weather satellites began in 
1974, and the first polar-orbiting environmental satellite 
(POES) was launched in 1978. The POES program 
greatly improved the data available for assimilation, as 
polar-orbiting satellites orbit at a much lower altitude 
(about 850 km above the surface, versus 35,780 km for 
the Geostationary Operational Environmental Satellite 
(GOES)), allowing much higher-resolution sampling. 
These satellites also use active sounding sensors that 	
in many cases can penetrate clouds and provide more 	
information about the environment, including ocean 
temperature and surface winds on the ocean, and can 	
estimate temperature and humidity profiles. Subsequent 
satellites have been equipped with increasingly sophis-
ticated and high-resolution instrumentation, leading 	
to a dramatic increase in the quality of atmospheric 	
analyses as observations from large volumes of the 	
atmosphere became available.

Numerical Weather Prediction

All weather inputs for operational load, wind, and 	
solar forecasts in the electricity sector are based on 	
foundational data coming from government-operated 
NWP programs. This is because the process of collecting 
and assimilating data is costly and requires cooperation 
across nations, and the models themselves require 	
vast quantities of computer resources. In some cases, 	
additional NWP tasks are performed by users or providers 
in the energy sectors in the process of producing sector-
specific products, but for the most part, at this time, 	
the NWP output of the major national centers—the 	
European Center for Medium-Range Weather Fore-
casting, the UK Meteorological Office, the U.S. National 

Oceanographic and Atmospheric Administration’s National 
Centers for Environmental Prediction, and the Canadian 
Meteorological Center—is difficult to improve upon in 	
a timely and cost-effective manner. Most providers in 	
the energy sector focus on statistical post-processing 	
of the raw NWP data, usually using machine learning 
techniques.

Reanalysis Output Refactoring

Raw model output from the reanalysis process is 		
archived, but the data provided to users are usually 	
refactored into datasets that provide a standard set of 	
atmospheric variables on a regular grid that is typically 
mapped to a sphere with multiple vertical levels. For 
spectral models, the raw model archive consists of 	
spectral coefficients or gridded data on a reduced 	
Gaussian grid,20 so it is usually interpolated to a fixed 	
latitude and longitude spacing when provided to end 	
users. This means that grid spacing in the north-south 
direction is constant but west-east spacing varies with 
latitude. For example, a 0.25° latitude x 0.25° longitude 
grid has north-south spacing of 27.8 km everywhere,21 
while the west-east spacing is 27.8*cos(latitude), which 	
is 27.8 km at the equator, 24.1 km at 30 degrees, 19.7 km 
at 45 degrees, and 13.9 km at 60 degrees. It is important 
to note that in this case the apparent increased horizontal 
west-east resolution at higher latitudes is an artifact of 
this interpolation and is not an indication of increased 
resolution at high latitudes.

Reanalysis data are usually provided to end users on 	
familiar vertical coordinates like height or pressure 	
levels. For example, ERA5 (Fifth-Generation ECMWF 
Atmospheric Re-Analysis of the Global Climate) data 
are provided at 25 hPa intervals starting from 1000 hPa. 
However, the native model output represented on a 	
terrain-following vertical coordinate has far better 	
vertical resolution near the surface. This can be useful 	
for wind energy purposes as it provides wind speed 	
estimates at several levels across the rotor diameter, 	
for those willing to deal with transforming from 		
the native format.

20	 A discussion of spatial referencing, reduced Gaussian grids, and spectral coefficients can be found at https://confluence.ecmwf.int/display/CKB/ 
ERA5%3A+What+is+the+spatial+reference.

21	 The polar circumference of Earth is 40,008.8 km, or 111.13 km per degree.

https://confluence.ecmwf.int/display/CKB/ERA5%3A+What+is+the+spatial+reference
https://confluence.ecmwf.int/display/CKB/ERA5%3A+What+is+the+spatial+reference
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Deep Convolutional Neural Networks  
for Downscaling NWP Output

Recent advances in machine learning techniques for 
computer vision have inspired a new class of methods 	
for the post hoc downscaling of NWP outputs. These 
methods promise to reduce the burdensome computa-
tional requirements of high-resolution NWP simulations 
while maintaining high-quality data outputs. If these 
methodologies can be proven to work well, they will 	
enable the production of higher resolution and longer 
time series of weather input data suitable for power 	
system modeling applications, as well as ensembles 	
of these datasets that capture the uncertainty of the 
weather inputs and therefore allow electricity system 
studies to model sensitivity to this uncertainty.

Deep convolutional neural networks (CNNs) have 	
been recently shown to excel at a wide range of computer 
vision tasks, including generative models. Convolutional 
kernels are designed to match the dimensionality and 
structure of image, video, and NWP simulation data, and 
the convolutions are repeatedly layered to extract and 
process data features at both large and small scales. 	
The result is a powerful nonlinear parametric model that 	
can learn physical phenomena such as the momentum 
balance for wind flows on a gridded hypercube in much 
the same way that finite-difference or finite-volume 
methods operate in NWP models. 

In practice, a major problem is that a naïve convolutional 
network can exhibit regression to the mean in the form 
of blurring when producing forecasts or enhancing the 
resolution of data. Statistically, this may be a reliable 	
output for the convolutional network that will minimize 
its objective function, but it greatly reduces the practical 
value of the data. One solution to this problem is 	
adversarial training with generative adversarial networks 
(GANs), where a generative model must produce data 
that are not only conditionally accurate but also 	  
sufficiently realistic to fool a discriminative network. 		
For downscaling data with GANs (often called super-	
resolving), the generative network is trained to produce 
an enhancement of the low-resolution input data that 

the discriminator believes is similar to real data, while 
simultaneously minimizing the numerical deviation  
from a corresponding true high-resolution dataset. 	
This method has been shown to be effective in creating 
highly realistic enhancements for many types of data. 

GANs with deep convolutional networks have only 	
recently been applied to the task of downscaling NWP 
data but have already shown considerable promise with 
high-quality physics-based validation of the outputs 
(Stengel et al., 2020). To the knowledge of this project 
team, only a single public dataset has been published 	
at the time of this writing that leverages GANs to 
downscale climate data, in this case a precipitation 	
dataset from CMIP6 (Hess et al., 2022).22 However, 	
several wind datasets are known to be in development 
that leverage GANs to do a final spatio-temporal 	
enhancement on coarse NWP data instead of running 
the NWP down to the final desired resolution. The 	
benefit of this hybrid NWP+GAN approach is a 	
significant reduction in computational costs compared 	
to what would be required by a full high-resolution 
NWP simulation (estimated at more than two orders 	
of magnitude in compute time savings).

The main drawbacks of using GANs for downscaling 	
are that this requires significant investment in machine 
learning expertise, machine learning–specific computing 
infrastructure, and high-quality training data, and 	
can result in a loss of methodological interpretability 	
including the possibility for data outputs that do not 	
respect physical constraints. This last problem is clearly 
the most concerning, as low-quality data with poor 	
physical constraints could compromise power system 
planners’ ability to accurately predict and plan for future 
system needs. The methods described above have the 	
potential to greatly benefit the renewable energy and 
meteorological communities, but rigorous validation 
needs to be of the upmost priority. Statistical bench-
marking, validation against ground-truth observations, 
and careful examination of physical data characteristics 
like turbulence should all be regular practice when 	
implementing these methods.

22	 See the World Climate Research Programme’s Coupled Model Intercomparison Project at https://www.wcrp-climate.org/wgcm-cmip.
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Data Produced for Solar Generation 	
Calculations

Satellites contain instruments that measure the reflection 
of solar radiation within the atmosphere and the emission 
of infrared radiation by it. Several factors including the 
presence of water vapor, clouds, and the temperature 	
profile all impact these measurements, and through 	
complex model algorithms these measurements can 	
be used to make inferences about the properties of the 
atmosphere that result in the measurements and/or 
about irradiance at the surface. The methods can be used 
specifically to produce irradiance measures, as is the case 
for the National Solar Radiation Database (NSRDB), or 
in conjunction with NWP models where the assimilation 
process uses the measurements to improve the initial 
condition and then the model determines the evolution 
of the surface irradiance properties.

Irradiance data produced by NWP models are subject 	
to many of the same caveats regarding model resolution 
that have been highlighted for wind data. In addition, 
radiation calculations are computationally expensive 	
because they model all the reflection, absorption, 	
emission, and scatter of both longwave and shortwave 
radiation throughout the atmosphere and by the ground. 
Because of this computational intensity, they are usually 
performed at longer time step intervals than other 	
model calculations. For example, the calculation may 	
be performed as infrequently as every 30 to 60 minutes, 
although every 5 to 15 minutes is more common. This 	

is important, because short-interval irradiance data 	
in some NWP datasets may be static or interpolated 	
between radiation calculation periods even if other fields 
are updated more frequently. Also, most NWP models 
only need to calculate global horizontal irradiance (GHI) 
as part of the modeling radiative processes and may not 
calculate direct normal irradiance (DNI) and/or diffuse 
horizontal irradiance (DHI). However, many modern 
models (for example, WRF-Solar) have options that 	
allow GHI at the ground to be calculated as frequently 
as the regular model time step. They also have options 
that allow direct irradiance at the surface to be calculated. 
From this, DNI can be calculated, and together with 
GHI, DHI can be deduced.

The NSRDB has 4 km grid spacing, which is reasonably 
good, but a finer grid is better, especially when dealing 
with smaller clouds. The National Center for Atmospheric 
Research has developed the MAD-WRF model 		
(Multi-sensor Advection Diffusion Weather Research 
and Forecasting) for intra-day forecasting applications, 	
which uses satellite observations (and surface-based 	
ceilometer observations, where available) to correct the 
cloud and other model fields at initialization ( Jiménez 	
et al., 2022).23 It inserts clouds where the model has 	
none (and estimates the level(s) at which to add 		
cloud and modify other model fields accordingly) and 
eliminates clouds where the satellite shows that none 	
exist. Application of newer techniques like this will	  
further improve irradiance data in future datasets.

23	 See https://ral.ucar.edu/solutions/products/mad-wrf.
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