Webinar: Overview of Grid Forming Interconnection Requirements	
Question	
Question	Answer
Various grid codes have different definitions of GFM.	Yes, it is desirable to have industry-wide definition of grid forming agreed upon. The
Will this cause problems for the future development of	definition should only include very basic principles of grid forming and leave the individual
technical specifications (such as cross-reference)?	capabilities to be defined in the specifications document.
Is the focus of the GFM only in bulk power? Is there any	GFM actually is coming from microgrid application, however so far such operation was
studies/ specifications on BTM GFM? (edited)	limited to one GFM resources providing reference for the rest of the microgrid. Currently
	there is ongoing work at National Grid ESO, EPRI and academia looking at benefits and
	challenges with distributed GFM resources
	GFM battery can respond nearly instantaneously, similarly to inertial contribution of a
we also need Supercapacitors?	synchronous machine. For example, AEMO has previously presented charts showing
	response in inertial timeframe from big Tesla (Hornsdale) battery to a nearly coal generator
	trip. On the other hand, depending on capabilities sought from a GFM resource,
	Supercapacitor can be sufficient, without needing a battery.
Do you think the NERC 2023 "functional specifications"	I think it's the first step in the right direction. NERC's specifications are outlined in the white
for batteries go far enough? What should NERC's next	paper with the goal to provide some guidance to industry already starting on this path. As
step be?	we gather more experience from the GFM projects in the U.S. and internationally the next
	step is to produce more comprehensive Reliability Guideline probably in a year or two,
	depending on the pace of the development in this area.
What stability concerns drive slow interconnection and	Yes, I think these two issues go hand in hand. I.e. GFL IBRs cause new or exacerbate existing
is it practical to develop GFM design standards that can	stability concerns, while GFM IBRs may help mitigate existing stability concerns and reduce
replace GFL for rapid approval?	need for additional supplemental devices for GFL IBR support such as e.g. SynCons. With
	that one of the incentives can be streamlining interconnection of GFM BESS connecting into
	areas with existing stability constraints. This approach, for example, is adopted by Fingrid
	and also been suggested in ERCOT's 2018 Dynamic Assessment
	and also been suggested in ENCOT'S 2018 Dynamic Assessment
Should GFM on BESS be mandated ? Or is this something	It's a personal opinion but, I think, core capability (as e.g. AEMO defines it) should be
we should be providing financial incentives for ?	mandated on all future BESS, but as power systems evolve, it is possible that the system
	operators will formulate new services and procure additional capabilities through markets.
	For example National Grid ESO has taken the latter path by first conducting a series of
	tenders for new stability service (defined as provision of inertia and short circuit current)
	and now designing an market for it.

Is GFM meaningful of inertia support perspective, does it	provision of initial active power response to phase jump or MW loss requires some sort of
have to be equipped with ESS always?	energy buffer, it can be ESS, or solar operating below maximum available production or
	wind turbine drawing energy from rotating mass of the turbine. Very small amount can also
	be drawn from the dc-circuit capacitor. How much is needed from a single resource depends
	on system design, capabilities of other resources and speed of frequency response that
	follows that initial "inertial" response. There are many options to choose from but no one
	definitive answer, unfortunately :)
To be viable in a Grid IBR must be reliable and continue	Hopefully I understand this question correctly, but basically there are two steps that are
to operate for defined set of Grid transients. What are	needed 1) we need to make sure that existing and future grid following IBRs are installed
plans to define and implement this requirement	with state-of-the-art capabilities. For that I firmly believe comprehensive interconnection
	requirements are needed and IEEE2800 is an excellent example of such requirements. 2) as
	power system progress towards higher shares of IBR, new capabilities will be needed from
	IBR themselves and this is where GFM comes into play and comprehensive specifications for
	GFM IBRs are needed in addition. One last but very important point to add here is that
	requirements alone are not sufficient, they need to come with comprehensive conformity
	assessment procedures and post-commissioning monitoring throughout the lifetime of the
	resources to make sure that the resource is designed and continuously operates in
	compliance with applicable requirements. This is what IEEE2800.2 is being developed for
	currently.
Most codes are currently non-mandatory, but GFM	As with any new resource, the issues are possible. This is a new technology, and the industry
already exists on the system and starts to support grids	is just learning/gathering experience with it. It is important to monitor and learn from
and markets, will it cause problems?	operation (an any issues) with these resources. While there are just a few of these
	resources, the issues shouldn't be detrimental to system reliability but will allow us to learn
	and fix as we go.
Are utilities open to GFM in weak grid area as an	Yes 4 system operators in Germany currently have big plans for using GFM STATCOMs as
alternative to building new transmission to strengthen	transmission assets to strengthen the grid. Currently one such STATCOM (though without
grid? If so, do you have any examples?	extra storage) is already installed in German grid and one with supercapacitor is under
	construction. It's more difficult with BESS since these are viewed as a resource in
	deregulated market and cannot be used as an alternative to transmission. However, Fingrid
	is allowing BESS with GFM capabilities to connect in weak grid areas (whereas the
	connection to GFL BESS would have been refused). They are doing this recognizing that GFM
	BESS will have stabilizing effect on the grid.

What makes WEM GFM so much harder than PV GFM?	in WEM energy needed to respond in subtransient/transient timeframe comes from rotating mass of the drive train, this introduces additional stress on mechanical parts and requires additional design considerations. While tests on existing wind plant in Scottland have proven that GFM operation of a wind plant is possible, there is no good understanding currently about long term impacts of such operation on a wind turbine. In PV plant there are no rotating parts, GFM operation will require continuous operation below maximum available production. While this results in loss of revenue, technically GFM controls and impacts on hardware in PV are the same as in BESS application
Is the cost of over sizing an GFM practical to provide phase jump active power, or is it better to obtain service through other mechanism?	My personal opinion if the need of the system is such that it requires oversizing of the equipment, it has to be compensated through a market mechanism.
Can you speak to what is going on in Canada, given different jurisdictions?	As far as I know there are no existing GFM IBRs in Canada. To my knowledge somewhat different interconnection requirements currently apply to grid following IBRs. Two years ago GE Energy Consulting has carried out comprehensive comparison of those requirements as well as provided comparison of existing requirements for IBRs that apply internationally. The report is posted here https://weican.ca/docs/Canadian%20Provincial%20Grid%20Code%20Study%20- %20Final%20Public%20R2.pdf
To support my fast enough comment re batteries. How fast is Synchronous Inertia actually delivered? Microseconds?	The start of synchronous inertial response is immediate but since it has to do with drawing kinetic energy from the mass takes hundreds of millisecond to several seconds to deliver full response. In fact, theoretical meaning of inertia constant is how much time it will take for a synchronous generator initially operated at nominal speed generating at rated power (drawing only from kinetic energy stored in it's rotating mass) to come to a complete stop.
In one of the slide you said GFM should supply short- circuit current. How this can be done with Power Electronics converters?	At a minimum it can supply 1 pu current, but normally 1.1-1.2 pu is possible over subtransient/transient timeframe. If more capability is needed this will require oversizing the converter in relating to the primary source (wind turbine, solar array, BESS) and should be incentivized as it will result in significant hardware costs. Prior to requiring/procuring oversizing careful analysis is needed as to how much short circuit current is required and for what purpose (e.g. proper operation of protections, dynamic voltage support, black start or restoration)
Beyond the inverter/interconnection point, is there other infrastructure that is needed to enable GFM?	Not in a BESS or Solar PV but for wind additional considerations are required in drive train and tower design. If capability above rating is required than there's additional hardware required.

Are the percentages on slide 2 based on installed	Percentages are based on penetration but are illustrative, as they may be dependent on
capacity or energy penetration?	system characteristics in addition to IBR capabilities.
Are there different considerations being given to grid- edge or new infrastructure applications for GFI's versus integration with established grids?	Yes GFM technology is actually coming from microgrids and island applications first, if that what you meant by grid-edge. In Australia there are about 4-6 GFM BESS supporting mining sites. Florida Power and Light is currently considering GFM BESS on the end of long 110 kV feeder that already has a number of GFL IBRs connected. The aim with GFM BESS is to improve system strength and stability in the area. There's HVDC back-to-back converter that is grid forming on one side installed between Upper and Lower peninsula on lake Michigan (in Mackinac straight), the GFM converter can provide grid strength, support islanded operation and even do black start of the Up, if is using the Lower peninsula grid as an energy buffer for this.
How do you determine the response time for 5msec? is there any reference?	Nope unfortunately no reference, I think the point with saying "in less than 5 ms" is just to say "nearly instantaneous".
For a utility that is procuring black start resources today, what standards do you think should be in the RFP so that they can consider IBRs and CTs?	I think consideration should be given to inrush current needs (or soft-start should be used in GFM IBR to limit inrush currents) and duration of storage needed. I think to develop requirements for GFM IBRs to provide blackstart a system operator needs to do a study to understand the system needs and then translate these needs into black start resource specifications. Note that the needs with regard to above two parameters will also depend on other resources available to support restoration after initial black start. Similarly to how National Grid ESO does it for GFM IBRs overall, rather than requiring certain amount of overcurrent capability and energy storage duration from a black start resource, a better approach is to base remuneration on the capability a black start capable resources has.
What specific value (degrees) phase jump withstand capability should a "GFM" resource have as a technical	National Grid ESO states 60 degrees phase jump withstand capability, but I understand that discussions in the grid code development group have been to reduce this number and the
minimum? IEEE 2800-2022 specifies 25deg for pos. seq.	according update of the code language will follow soon.

How can we define and calculate the value of virtual inertia? How can we know what quantity is enough to replace traditional SG to achieve same inertia in grid	Theoretically in a last synchronous machine loss test that I had on one of the slides, frequency control can be disabled and only inertial response of the GFM BESS captured. The area active power injection in the timeframe before frequency nadir should correspond to "inertial energy", using MVA_base of the resource this can be converted to the equivalent of inertia constant. With regard to your second question, I don't thing trying to replace inertia for synchronous machine 1:1 is the right approach. Synchronous machines were providing certain level of inertia because of their design not because system needed this inertia specifically. In an IBR-dominated grid a study is needed to understand how much of virtual inertia is needed. The result will depend on the size of the largest MW loss, UFLS trigger (assuming that this is what we are trying to protect against), any high RoCoF limitations that may exist and other hand what frequency response capabilities that are there (are IBRs providing fast frequency response? How fast and what's the deadband? are loads providing fast frequency response? How fast and what's the deadband? Are there any synchronously connected motor load on the system (they too have inertia contribution). Sorry long list of things to consider but there is no one definitive answer to this.
For GFM with inner current loop control, what is the differente in the bandwidth (response time) of this inner loop control and the one from GFL? (edited)	I had to ask Deepak Ramasubramanian (EPRI) to help me with this question: Bandwidth of inner current loop in GFM is often of very similar order as the bandwidth of inner loop in non-GFM controls. The presence of an inner current control loop doesn't necessarily imply instability by default as actual instability is related to how the outer loops interact with this inner loop.
In the generator-trip test, how is the load modelled? Constant power, constant impedance, or something	Constant impedance model is used in this test
Will any of ERCOT's 17.5 GW of committed batteries be able to be installed with GFM specs? Or does it have to be in their original interconnection applications?	ERCOT still doesn't have GFM specs. These 17.5 GW of storage are in various stages of development. I am just theorizing but I think for the ones where equipment has already been procured and interconnection studies completed it will be as hard as a retrofit to get GFM capability. Even through theoretically GFM control on a BESS requires just a software change, the retrofit is still not easy because the OEM of the equipment might not have GFM controls developed. Even if conversion is possible it will require IBR model updates and restudy. So in conclusion ERCOT needs to develop GFM specs soon and have implementation timeline to go with it to deploy it on as many BESS (out of 17.5 GW) as possible but considering limitations of the projects that already too far in the process.

Do these specifications of grid forming presented apply	From all specs I have presented I believe only FNN/VDE (German) requirements apply to
for HVDC system?	HVDC converters on HVDC links. Note that e.g. offshore wind connecting through HVDC
	would be considered a part of GFM Resource for the purpose of requirements (e.g. in
	National Grid ESO specs)
Where can I find the NERC grid forming functional	The draft had been approved by NERC RSTC 3 hours prior to my presentation. The technical
specifications in their final version mentioned at the	content with that is approved and set but NERC publishing is working on editorial changes.
beginig of the presentation? I only found the draft.	The final document will be posted shortly.
when can we expect IBR provide black start capability on	I wish I had a crystal ball :). I think first it will be GFM specs for connected operation and
a transmission system? and when would you target	black start will follow in system that are facing extra high shares of IBR where existing black
codes/regs to support this? thank you	start units are retiring. I believe National Grid ESO has already started working in that
	direction in their Distributed Restart program and I would expect HECO to start thinking
	about it very soon as well.
Hi Julia, there is also CENELEC TC8/WG03 that is working	I am not sure what "real standardization" mean in this question. I think we need a standard
at 50549-20, what is your suggestion for a real	definition of GFM behavior at it's core, past that, I believe, GFM requirements should be
standardization? (edited)	plant-level performance requirements similar to how IEEE2800 applies to IBRs today, with
	that we need to work on performance scandalization rather than equipment standard. But
	that's just my opinion.
NERC requirements did a poor job to capturing the	I don't understand if the question means to say it's to early to think about GFM until we
capabilities GFL inverters and updates are underway. Do	have GFL issues fixed? In that case, I think, these efforts can continue in parallel. If the
we need to consider requirements now for GFM?	question is how not to consider lessons learned from GLF IBR requirements when
	developing ones for GFM, then the answer is yes absolutely. Additionally, GFM
	requirements are on top what already applies to (GFL) IBRs, so all improvements to GFL IBR
	requirements will apply to GFM IBRs as well.

what method is proposed to measure the stability of a system with synchronous generators, Grid forming inverters and Grid following inverters	Excellent question! Ideally stability should be determined from comprehensive studies subjecting the system or a part thereof to realistic stress-tests. Stability then is determined by ability of the system to reach new acceptable steady state after a disturbance (small or large signal). This approach applies independent of resource types that exist on the system. These studies need to be carried for variety initial system conditions. In reality it is difficult and time consuming, especially if studies are carried out in EMT. Therefore there is a need in industry to use screening methods that allow to quickly and effectively select study cases that require more detailed study. Historically short circuit ratio was used as one of such screening metrics. This metric uses short circuit current as the measure of proximity to strong voltage source. This works well in a synchronous-machine dominated grids however it fails to capture e.g. voltage source behavior of GFM IBRs that do not provide short circuit current beyond 1-1.2 p.u. In reality what we are trying to understand with this metric is voltage sensitivity at a POI to current injection (not the amount of short circuit current that will be injected during a fault). In my opinion new metrics are needed to screen for stability concerns in high IBR grids. This is active area of research. E.g. some of these metrics/screening methods were presented at ESIG Spring Workshop in 2023.
Could you please provide the link for NERC IRPS white paper?	The draft version that was published for industry comments in June is avaialble here https://www.nerc.com/comm/RSTC_Reliability_Guidelines/White_Paper_GFM_Spec_BESS. pdf. The final version after industry comments were addessed was approved by NERC RSTC 3 hours before the webinar and is currently undergoing internal editorial review at NERC. I believe it will be posted shortly
the accurate measurement of the ROCOF rate following a phase jump is very important. How will this be implemented as most existing systems give false data	Why is RoCoF measurement very important during phase jump? The idea is that grid forming resource is responding to phase jump inherently because it's trying to hold internal voltage angle constant in subtransient/transient timeframe, which will result in change in current injection from grid forming resource in response. There is no underlying RoCoF measurement. If I misunderstood your question please follow up with me by email julia@esig.energy, I am interested to understand the motivation behind it.
Has NERC or its Regional Entities proposed anything to bring standards for GF Batteries? What other smart grid operations does the GFM will	NERC IRPS white paper that I talked about during the webinar is the first step in that direction. Otherwise ERCOT currently planning to work on development of GFM BESS interconnection requirements, this is at a very early stage yet I don't quite understand this question. In the webinar that slide with blue bubbles covers
initiate ?	everything that system operators think GFM resource should do so far.

A standard is needed for the allowed Phase Jump Angles	Yes this is a great comment! National Grid ESO so far proposed 60 degrees, but I believe
in an AC grid is needed so that IBRs can be type tested.	there is ongoing discussion to reduce it (don't think they have agreed on a specific value
What value is proposed for typical systems	yet). IEEE2800 has 25 degrees requirement. I agree with you that there is a need for
	minimum that IBR can expect to see and should be designed for and if the system start
	deteriorating below this minimum one option could be for the network owner/operator to
	always maintain that minimum still. Same concept can be applied to system strength for
	example and currently is implemented in Australia. However, in this case, I don't thing SCR is
	the right metric to use going forward (especially as we start getting more GFM resources),
	see my response to questions 34.