Webinar: DER Communication and Data Management: From Interoperability to Impacts	
Question	Final Answer
How important will DER distribution visibility, state and	There are many factors that must come together for DER to reach their potential.
topology estimation be for DER aggregation to fulfill its	Visibility, state, and topology (real/estimate) are all important for normal operations,
potential for VPP aggregation?	aggregated operations, or as part of a VPP. Adopting standards for what visibility,
	state, and topology information are "required" versus "nice to have" for all
	stakeholders would be a good first step to improve DER performance, overcome
	M&V challenges, and effectively evaluate economics opportunities.
RA historical practice appears to be a primary challenge for	ESIG has done a lot of work on RA and I will not attempt to succinctly capture those
seeing the value of DER. What is your recommendation of how	points here. However, I think the DER and RA asyncronization is a function of both the
we should perform RA going forward?	historical RA framework and the historical DER programs. Our RA analysis can do a
	better job of caputing the functionality of DER and future DER programs can do a
	better job aligning with operational frameworks (and therefore our modeling of
	them). Specifically, I am thinking of programs that avoid the customer fatigue
	challenge altogether and arm operators with flexible tools that can be used on a daily
	basis, even if they aren't used on a daily basis.
Incentivizing load flexibility is critical, but we are making only	The biggest barrier to load flexibility is the customer. Both their natural behavior and
spotty progress in accessing this flexibility. What do you see as	their interest in utility programs. With respect to behavior, the natural daily cycle of a
the barriers?	homeowner/commercial business for electricity can be somewhat rigid, with little
	flexibility to maintain "comfort" and convenience. With respect to interest, DER
	participation models can be complex and opt-in frameworks make recruiting
	participation difficult.
Can you comment on the impact of resilience of	The impact of the resilience of communication, while vital in some circumstances, is
communication used for demand response control and how to	highly dependent on the use case. Devices should be configured to operate in the
plan for comms outages.	absence of communications in an acceptable mode for the given grid conditions.
	There can also be layers of demand response built into the system where the devices
	are both behind the meter and in the grid to provide two possibilities of enticing
	demand to respond through two different communication networks (presuming
	consumer devices over the Internet and grid devices over utility SCADA, for example).
	The plans for communication outages should be developped in the context of how we
	have historically operate the distribution system with minimal insight into real-time
	grid conditions.

Can you talk about how Cyber attack surface impact as per	IEEE 1547.3 covers this topic in depth. The cyber attach surface may increase due to a
IEEE 1547 protocol (DNP3, Modbus, IEEE 2030.5)	greater number of devices, but the security approach is well-defined and applied
	successfully throughout the industry.
How would you suggest a city of 100,000 begin to think of	Performance-based contract or purchased power agreements can be used to address
executing a DER coming from private sector utility	the needs of the city, whether those are peak management, reliability, resilience, or
management?	other objectives. This sort of "energy as a service" can begin with a clear definition of
	the desired outcome.
buildings are flexibility services providers, would it be useful to	The model shown and discussed in the webinar is only for the electrical parameters,
have within the "asset object" the thermal performance to	the scope of IEC. The thermal flexibility of buildings should be available to electric grid
decide load shifting strategies?	operators in the form of electricity impacts. There are large opportunities for thermal
	end use flexibility aligned with the system stress conditions. For example, summer
	stress conditions may be a good opportunity for a water heater demand response.
	These are often implemented now by requesting a demand reduction and letting the
	building management systems decide what equipment to use (A/C, heating, lighting,
	etc.). The thermal performance is reflected in the electrical demand to modify the
	interior temperature at whatever interval is needed to maintain the desired set point.
are all standards available for DER or are some standards still	There are always standards under development, revision, and consideration.
missing? If missing, which ones and who is responsible for	However, there are plenty of standards available to do just about anything. While
creating those solutions?	some may not be originally intended to meet a given use case, they can be adapted to
	do so. For example, IEEE 2030.5 has a fairly clunky mechanism for aggregations, but it
	works if you do some careful program management. We have called out a need for a
	data "standard" on EV interconnection applications, similar to what was done for
	solar via Orange Button in the past. Similarly, there's a need for clarity on the UL
	standards for automated load management so utilities can verify that software
	defined systems can limit loads. Both of these are discussed in the forthcoming ESIG
	whitepaper on EVs/Distribution Planning. I don't see these as holding leading utilities
	back yet. Folks can always make an existing standard work if they're trying to
	be innovative.

Should we be discussing DER, as it relates to EV charging	I don't think it's helpful to think about EV charging differently than other DER from an
infrastructure versus all others, differently?	operations/data perspective. Such an approach would lock us into that world of
	Wunderkammer (cabinet of curiosities) that I discussed in the webinar. We already
	have some of that with metering and distribution automation using different data
	standards and therefore different softwares in many utilities. Taking the time to get a
	cohesive data approach defined upfront will save re-work and avoid data siloes in the
	long run.