Webinar: Interregional Transmission System Planning with HVDC		
Question	Answer	
If interregional transmission projects were to be developed	Offshore permitting is often easier and more cost-effective than building new greenfield onshore	
offshore, how do the regulatory barriers differ from onshore?	transmission. There may be unique low-cost opportunity to create interregional offshore	
Would the development timeline differ?	transmission by connecting neighboring offshore wind farms delivering to different market areas.	
	But low-cost interregional transimssion expansion opportunities will also exist onshore (e.g., by	
	upgrading aging existing interregional lines or increasing the interregional capability of the existing	
	system through grid-enhancing technologies)	
How does the current long lead times imposed by limited	The HVDC supply chain currently is more bottlenecked that the supply chain for most AC grid	
number of OEMs affect the economics of transmission	technologies. Some of the European grid operators have addressed this challenge by pre-ordering	
planning? the vendors offer long lead times now	the HVDC they expect to need over the next decade. The rapid growth of HVDC technology is	
	already motivating existing OEMs to increase their manufacturing capabilities and is attracting new	
	OEM into the market.	
What are the top technical risks from a technology, capex and	Significant experience with HVDC design, procurement, and grid integration has been gained by	
opex basis for HVDC implementation?	HVDC suppliers and European grid operators to reduce these risks to the point where they are no	
	longer preventing them from embracing the technology. U.S. transmission developers and grid	
	operators will be able to take advantage of that experience and learn how to use the technology in	
	planning, project development, and operational settings.	
Can merchant HVDC owners exploit the multi benefits through	Some HVDC capabilities can be monetized in RTO markets, particularly if market optimization of	
different market products? do they exist now?	merchant lines is offered through mechanisms such as CAISO's Subscriber PTO framework. Directly	
	interconnected generators will typically be able to participate in the market services offered in the	
	destination market. But most essential reliability services, such as reactive power, system	
	dampening, or run-back schemes to mitigate AC contingencies are not compensated by markets, so	
	could be monitized only through bilateral agreements to system operators.	
What are the chances that HVDC transmission may become	If an HVDC link is solely used as a gen tie, it's usefulness will be tied to the generation facilities,	
obsolete in the future when generation and load change	most of which will be repowered at the end of their economic life. But most HVDC merchant lines	
location in the future since it is a direct link?	proposed in the U.S. will ultimately interconnected to the AC grid at both ends. We are not aware	
	of any examples of such transmission lines becoming obsolete. If anything, the value of	
	transmission capability is increasing over time.	

Why are project developers converting solar/wind energy to	If there is insufficient local demand for electricity exists or electricity markets are very distant,
hydrogen and then to Ammonia for exporting energy vs using	converting the generation to hydrogen may be a more attractive business opportunity. In addition,
intercontinental HVDC to export energy?	because demands for green hydrogen/amonia are growing, some renewable generation is being
	built solely for that purpose.
Would you be able to put some of the most important	lower cost for high capacity, long distance transmission; uses less space and can be undergrounded
technical benefits of HVDC in more plain language that a	and used in submarine applications more easily; can be designed to benefit the existing grid by
	being fully controllable (like adding traffic lights to city streets). Please see the executive summary
policymaker would better understand?	
	of our report: https://www.brattle.com/insights-events/publications/brattle-consultants-highlight-
	the-operational-and-market-benefits-of-hvdc-transmission-to-system-operators-in-new-report/
Hi, are regions in US power grid are completely isolated or	See Chapter 2 of https://www.ferc.gov/media/energy-primer-handbook-energy-market-basics and
there is some weak existing ac interconnection between	https://jasondoering.substack.com/p/the-grids-org-chart
regions? which voltage levels are these?	
What about the issue with managing HVDC faults? will this	Faults on HVDC lines can now be managed better than faults on AC lines. Please see discussion in
cause stress on the AC sides ?	case study No. 9 and myths Nos. 7 and 9 (or search for "fault") in https://www.brattle.com/wp-
	content/uploads/2023/09/The-Operational-and-Market-Benefits-of-HVDC-to-System-Operators-
	Full-Report.pdf
Wouldn't it be cheaper to build next generation nuclear at load	In some cases it may be, but in many cases low-cost resources delivered even over long distances
than this plan?	are more cost effective. Importantly, interregional transmission isn't all about delivering distant
	resources, but about building a more resilient grid that can diversify generating resources over
	geographic areas that exceed the size of large weather systems.
Wasn't the Plains and Eastern Clean Line cancelled years ago?	The rights to the proposed line (including rights of way) were aquired by another developer. Note,
Why is it on this map?	though, that the map is only showing proposed lines, recognizing that only some of the the
	proposed lines will ultimately be realized.
In your cost comparison, does it include cost of converter	Yes. See link to MISO analysis. The main reason why the \$/mile is declining for HVDC lines is that
station vs switching or step down substation for AC?	converter station costs decrease on a \$/mile basis.
What about considering HVDC embedded into AC system Vs	These concepts are being considered. See for example the DOE's Atlantic Offshore Wind
radial HVDC network (giga grid concept) within US (for	Transmision Study (AOSWTS) or DOE's National Transmission Study (NTS). Embedded HVDC lines
example Offshore HVDC network)?	already exist (e.g., in CAISO, Alberta, and MISO) and new ones (such as in NY) are added to the grid.

For maximizing the utilization of interconnectors will require	There are seams-related barriers to trade, particularly in 5-minute real-time markets that are too
multi market participants in RTOs should be able to trade. Is	volatile for bilateral transactions. As a result many interties between markets currently are poorly
this a barrier in US RTO Markets?	utilized. Optimization of interregional transmission is, however, already achieved by the energy
	imbalance markets in the western U.S. and "intertie optimization" has been recommended to
	address the current inefficiences between other regional markets in North America. See:
	https://www.brattle.com/insights-events/publications/brattle-consultants-discuss-the-need-for-
	intertie-optimization-in-new-report/
What is DOE/Government doing to breakdown the regulatory	The U.S. DOE has numerous initiative supporting the development of HVDC technology, supply
barriers to build long transmission lines?	chain, planning, and development of transmission projects. See, for example,
	https://www.energy.gov/oe/hvdc-cost-reduction-core-initiative
Can you elaborate on what is VSC technology?	Please see Chapter 2 in: https://www.brattle.com/wp-content/uploads/2023/09/The-Operational-
	and-Market-Benefits-of-HVDC-to-System-Operators-Full-Report.pdf
How would buried HVDC on existing linear rights-of-way, such	The SOO Green project is proposing to do that with rail corridors and DOE has offered support with
as highway corridors, speed up permitting? Any cost-benefit	highway rights of way. Undergrounding HVDC is less expensive than undergrounding HVAC and can
study for that?	go long distances without reactive compensation and high losses, but underground HVDC is still
	significantly more expensive than overhead HVDC. Permitting advantages of underground are
	substantial, however, as the German HVDC cable projects demonstrate as well. See case study No.
	1 in: https://www.brattle.com/wp-content/uploads/2023/09/The-Operational-and-Market-
	Benefits-of-HVDC-to-System-Operators-Full-Report.pdf
RTO's do need Multi value Benefit to Cost ratio indices to	At least 90% of US transmission is planned solely to address reliability needs, with a preference for
assess the value of competitive transmission planning options?	
is there any move on this?	that would consider "values" (such as congestion relief) beyond addressing the identified reliability
	need. However, significant experience with multi-value planning processes already exists in North
	America, Europe, and Australia, as we summarized in Section 4 of our report:
	https://www.brattle.com/wp-content/uploads/2023/09/The-Operational-and-Market-Benefits-of-
	HVDC-to-System-Operators-Full-Report.pdf
Could you please elaborate on blackout capability of VSC HVDC	· · ·
	myth No.10 in https://www.brattle.com/wp-content/uploads/2023/09/The-Operational-and-
	Market-Benefits-of-HVDC-to-System-Operators-Full-Report.pdf
What are the power / energy losses while transporting long	For example, the annual losses of the 400kV, 1000 MW, 150km Nemo-Link were 2.4% during its
distance, especially intercontinental?	first year of operation. HVDC losses consist of converter losses (0.7% per converter) and line
	losses. Even when using the same conductors as HVAC lines, DC line losses are lower because the
	DC current is able to utilize the conductor more fully (no skin effect).

Why EU is more ambitious in planing Multi terminal HVDC and	For the most part, Europe is more serious about reducing fossil fuel consumption. Fuel costs are
offshore wind energy that the US?	also higher. Since Europe is surrounding large bodies of water (such as the North Sea), many
	"interregional" transmission projects are submarine HVDC links by necessity. With offshore wind
	generation located in the same bodies of water
Lower customer costs are just part of the discussion, need to	Most "transmission benefits" that can be monetized are avoided costs or reduced costs in the rest
also look at what are the benefits to my region?	of the grid (generation dispatch, generation investments, avoided cost of refurbishing aging
	facilities, avoided smaller reliabilty projects) that lower customer costs. These benefits can be
	quantified for each region and cost allocation can be structure such that each region sees net
	benefits that reduced customer costs (or increase reliability).
Does CAISO co-optimize generation/tranmission dispatch, or	The CAISO market engine co-optimizes the dispatch of generation and controllable transmission
modify network model used to calculate network constraints	facilities (HVDC lines and phase shifters) subject to constraints on the free-flowing AC grid.
between security constrained ED iters?	
We have ISO's are proposing larger increases in resource	ISO need to recognize how interregional transmission capability (even if not designated to the
requirements as high as 45%. They give little credit for	import of specific resources) can reduce region-internal resource requirements. Once they
imports, how should HVDC be used to help	recognize these benefits, HVDC can be more valuable because power flows can be controlled
	instantaneously (e.g., to compensate for AC line contingencies).
Labor and construction dollars are spent in someone else's	The question is unclear. Jobs and construction dollars spent may be one of the considerations for
area?	benefits that can support certain cost allocations. Cost allocations and shared project ownership
	may justify how labor and construction dollars are spent in different regions.