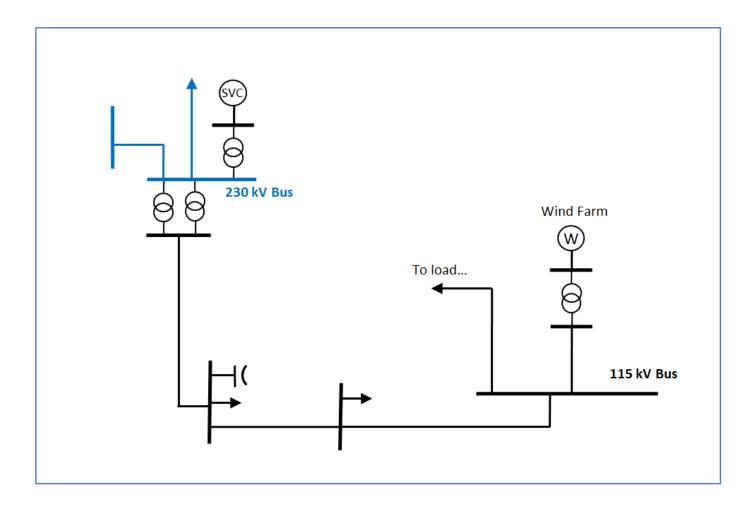
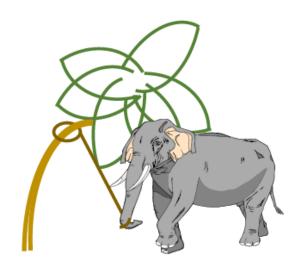

Weak Grid Concepts and System Strength Metrics


What is a *strong* system?

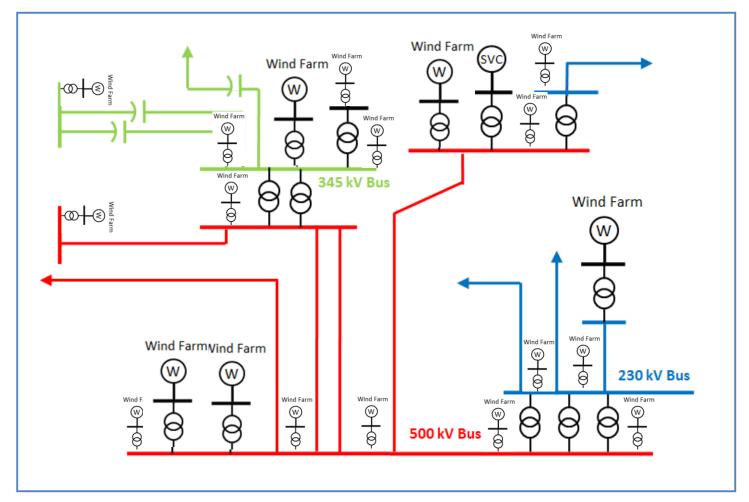
What is a weak system?



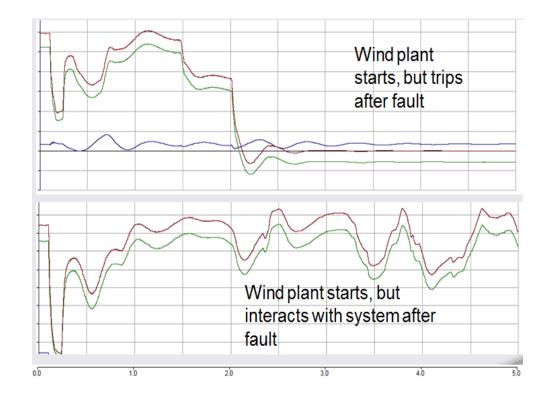


Is the network *relatively* weak or strong?

• The size of the wind farm *relative* to the strength of the system is a useful metric... (Figure courtesy NREL/GE)



What is a weak system in Texas?



Technical Issues in Weak Grids

- Failure to ride through disturbances
 - Plant may trip following a network disturbance, leading to wider system issues, such as under-frequency or loss of voltage support.
 - Weak systems make ride-through more difficult

Control interactions

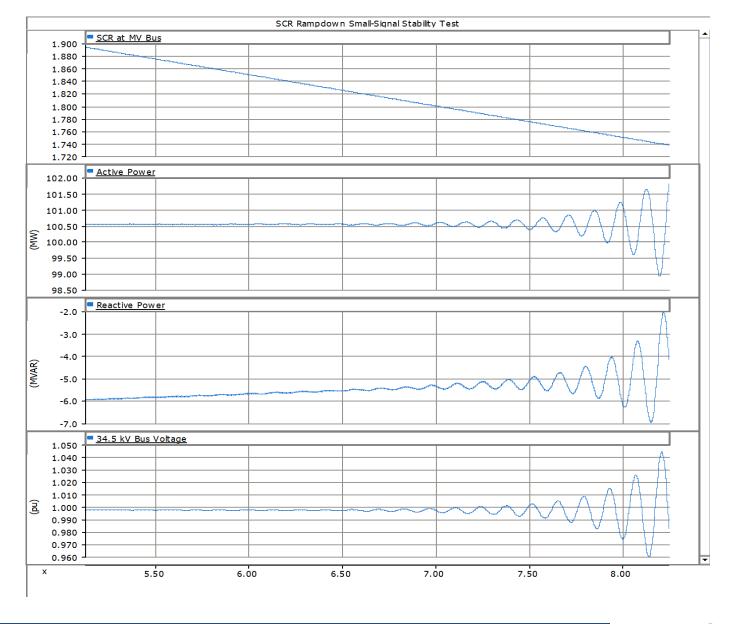
 The weaker the interconnection, the more likely controls will be to influence each other and interact negatively with each other or with the system.


Technical Issues in Weak Grids

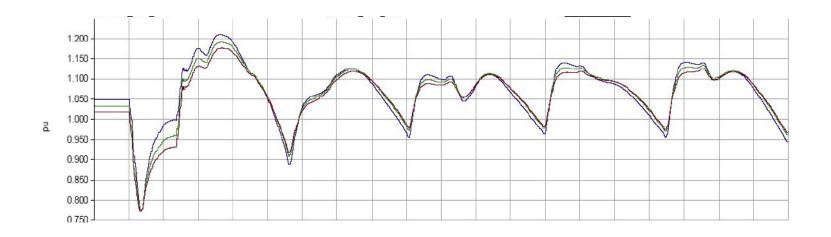
Control instability

 If the network is weak enough, controls may enter unstable region with no external influence needed (small signal instability)

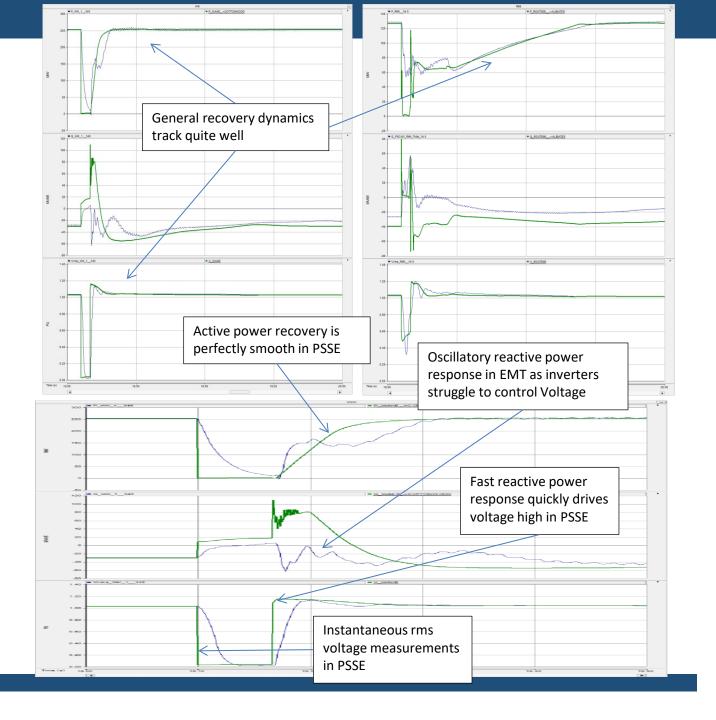
Example


 Wind farm located in Western Canada on a long radial connection, SCR approx. 1.2

Small Signal Control Instability



Technical Issues in Weak Grids

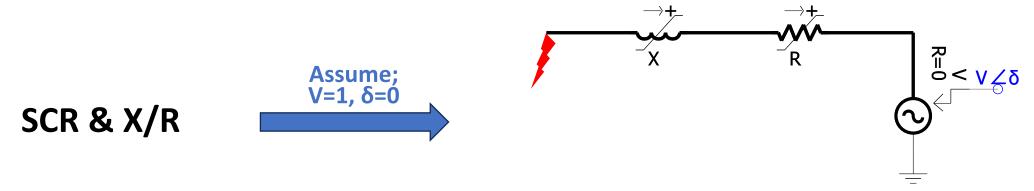

- Cycling between turbine control modes
 - Turbine controls may have special control modes to handle fault ride through (eg. reduce active power, tightly control terminal voltage, gently ramp active power back up to rated values)
 - If system is weak, control modes may be invoked multiple times as turbine attempts recovery, introducing severe transients into the system.

Transient Stability Limitations: **Texas** example:

SCR Definition

• The relative strength of the ac system, the IBR/FACT/HVDC is connecting to, is often parameterized by an index called the short circuit ratio or SCR.

Short Circuit Ratio (SCR) = $\frac{Short \ Circuit \ MVA \ (SCMVA)}{Rated \ Power \ (Prated)}$



Representation of an AC Grid for testing

To represent an AC grid in a simulation tool, following parameters are required;

- **1. R** (Resistance of the grid)
- **2. X** (Reactance of the grid)
- **3. V** (Voltage magnitude behind the impedance)
- **4.** δ (Voltage angle behind the impedance)

The objective is to calculate above parameters backwards from available SCR information (i.e. SCR and X/R)

Calculation of Impedance

•
$$SCMVA = SCR \cdot Prated$$

•
$$Isc = \frac{SCMVA}{V_{pre_fault}}$$

•
$$Z = \frac{V}{Isc}$$

•
$$R = \frac{Z}{\sqrt{1+k^2}}$$

•
$$X = k \cdot R$$

Per unitize on Sbase = Prated

•
$$SCMVA = SCR \cdot 1$$

•
$$Isc = \frac{SCR}{1}$$

•
$$Z = \frac{1}{SCR}$$

$$\bullet \ R = \frac{1}{SCR} \cdot \frac{1}{\sqrt{1 + k^2}}$$

$$\bullet \ X = \frac{1}{SCR} \cdot \frac{k}{\sqrt{1+k^2}}$$

Note: k = X/R

Power Transfer Limit

The power transfer across an impedance can be written as;

$$P(\delta) \coloneqq \frac{V1^2}{|Z|} \cdot \cos(\arg(Z)) - \frac{V1 \cdot V2}{|Z|} \cdot \cos(\arg(Z) + \delta)$$

Assume;
$$X/R=\infty$$
 (i.e. $R=0$)

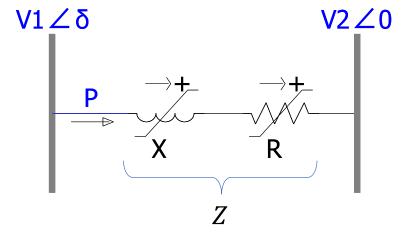
Fully Inductive

$$P(\delta) \coloneqq \frac{V1 \cdot V2}{X} \cdot \sin(\delta)$$

When
$$R = 0 \rightarrow X = \frac{1}{SCR}$$

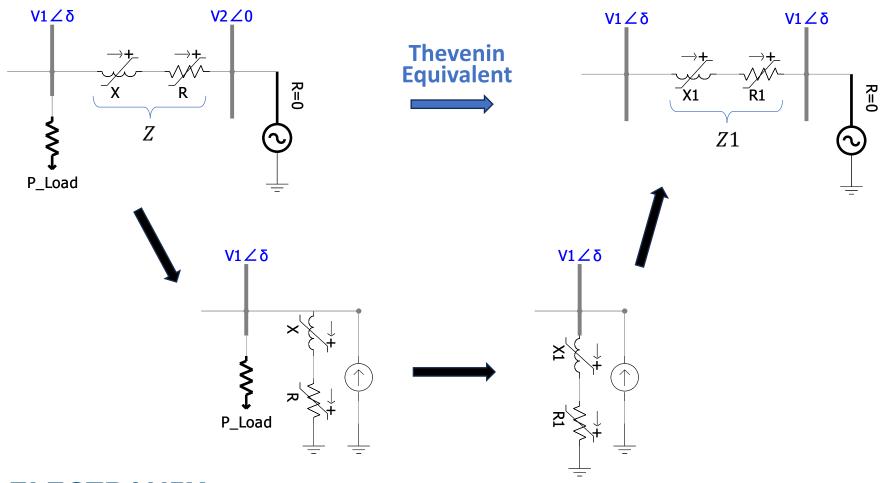
$$P(\delta) = SCR \cdot \sin(\delta)$$

$$MAX(P) := SCR$$


$$P(\delta) \coloneqq \frac{V1^2}{R} - \frac{V1 \cdot V2}{R} \cdot \cos(\delta)$$

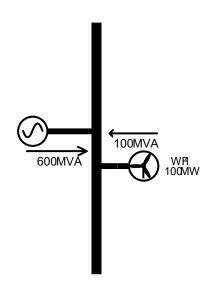
When
$$X = 0 \rightarrow R = \frac{1}{SCR}$$

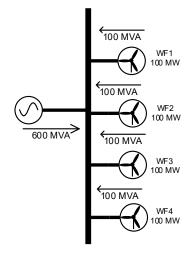
$$P(\delta) = SCR \cdot (1 - \cos(\delta))$$


$$MAX(P) = SCR \cdot 2$$

Representation of AC Grids of SCR < 1

Sample SCRs...


SCR Value	Concerns?
Less than 1.5	 Power electronics can't maintain control wind plant will not run at full power. Conventional study tools (Transient stability) may not run.
Less than 2.5	 Potential for control problems Wind plant may trip inappropriately, or interact badly with the external network Conventional study tools may not be accurate
Higher than 2.5	- Wind plant will likely perform predictably



SCR Metric - Limitations

 Can be misleading if there are multiple wind plants sharing system strength (Credit Cigre/AEMO)

$$\frac{600}{100} = SCR = 6$$

WF1 SCR =
$$\frac{600+100+100}{100}$$
 = 9???

Metrics – Effective SCR (ESCR)

 ESCR accounts for the impedance increasing effect of capacitive filters (usually used in HVDC)

$$ESCR_{POI} = \frac{SCMVA_{POI} - MVAR_{Filter}}{MW_{VER}}$$

• First parallel resonance shifts the fundamental frequency impedance, so shunt capacitance can weaken the system.

Effect of shunt capacitance on Z60

Metrics – Weighted SCR (WSCR)

- Allows consideration of nearby resources which share SCMVA
- Neglects electrical separation
- May misrepresent group strength if there are outliers

$$WSCR = \frac{Weighted S_{SCMVA}}{\sum_{i}^{N} P_{RMWi}}$$

$$= \frac{(\sum_{i}^{N} S_{SCMVAi} * P_{RMWi}) / \sum_{i}^{N} P_{RMWi}}{\sum_{i}^{N} P_{RMWi}}$$

$$= \frac{\sum_{i}^{N} S_{SCMVAi} * P_{RMWi}}{(\sum_{i}^{N} P_{RMWi})^{2}}$$

Where does WSCR work?

Workshop: Calculate SCR and WSCR for each group

		Small prob	lem plant				Larger pro	blem plant			Redu	iction in pro	blem plant	MW		Incre	ase in probl	em plant S	CMVA
	Α	В	A*B			Α	В	A*B			Α	В	A*B			Α	В	A*B	
	MW	SCMVA		SCR		MW	SCMVA		SCR		MW	SCMVA		SCR		MW	SCMVA		SCR
	25	25	625	1		100	100	10000	1		5	25	125	5		25	125	3125	
	100	1000	100000	10		100	1000	100000	10		100	1000	100000	10		100	1000	100000	
	200	3000	600000	15		200	3000	600000	15		200	3000	600000	15		200	3000	600000)
	400	4000	1600000	10		400	4000	1600000	10		400	4000	1600000	10		400	4000	1600000	
	200	3000	600000	15		200	3000	600000	15		200	3000	600000	15		200	3000	600000	
	400	2000	800000	5		400	2000	800000	5		400	2000	800000	5		400	2000	800000	
	200	1000	200000	5		200	1000	200000	5		200	1000	200000	5		200	1000	200000	
	1525	14025	3900625			1600	14100	3910000			1505	14025	3900125			1525	14125	3903125	
/SCR	1.677237				WSCR	1.527344	0.910631			WSCR	1.72189	1.026623			WSCR	1.678312	1.000641		
	incre	ase in pow	er at strong	bus		inc	rease in pow	er at weak	bus										
	Α	В	A*B			Α	В	A*B											
	MW	SCMVA		SCR		MW	SCMVA		SCR										
	25	25	625	1		25	5 25	625	1										
	100	1000	100000	10		100	1000	100000	10										
	200	3000	600000	15		200	3000	600000	15										
	450	4000	1800000	8.888889		400	4000	1600000	10										
	200	3000	600000	15		200	3000	600000	15										
	400	2000	800000	5		400	2000	800000	5										
	200	1000	200000	5		250	1000	250000	4										
	1575	14025	4100625			1575	14025	3950625											
							0.949533												

WSCR Pros and Cons

Goals of metric:

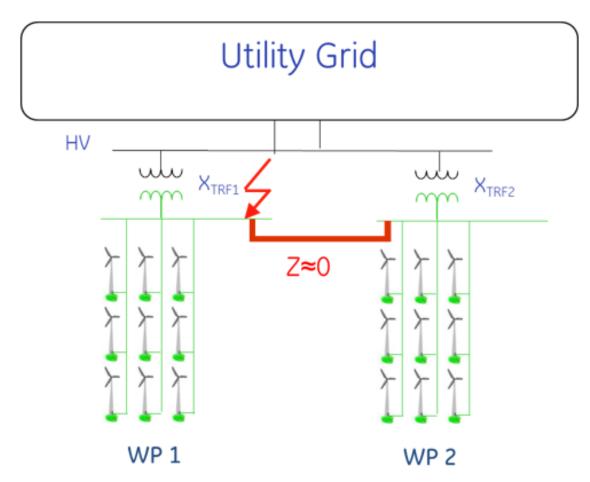
- represent sharing of conventional system strength
- represent electrical coupling between devices

Problems with WSCR:

- doesn't necessarily show local plant concerns
- more sensitive to active power changes than to increases in SCMVA, unless strongly coupled electrically.
- doesn't account for non-active power electronic devices like STATCOMs
- Doesn't account for capacity, only dispatched power
- Requires relatively close grouping of resources to have any meaning.

Good things about WSCR:

• Weights improvements to weak buses over strong buses.



Metrics – Composite SCR

- MV buses of wind farms in the cluster are shorted together and fault level is calculated in the simulation tool at the shorted bus.
- Similar limitations to WSCR

$$CSCR = \frac{S_{MV}}{(WP1_{RAT} + WP2_{RAT} + WP3_{RAT})}$$

Metrics – SCR with Interaction Factors (SCRIF), or Equiv. SCR

- Similar to "Multi-Infeed ESCR" (MIESCR)
- Allows consideration of other plants for evaluation of system strength for a single interconnection
- Allows consideration of FACTS (like STATCOM)
- Does not provide a common metric for a group of resources
- Requires more substantial calculation

$$SCRIF_i = \frac{S_i}{P_i + \sum_i (IF_{ii} * P_i)}$$
 $IF_{ij} = \frac{\Delta V_i}{\Delta V_j}$

Metrics – MVA vs. MW (eg. WSCR-MVA)

- Care should be taken with all simple metrics with de-rated wind capacity.
- You can use MVA rating of equipment, rather than Power
- Allows consideration of partial power generation
- Allows consideration of FACTS (like STATCOM)
- Similar limitations to WSCR
- The reality is usually somewhere in between MW and MVA

Comparison of SCR based metrics:

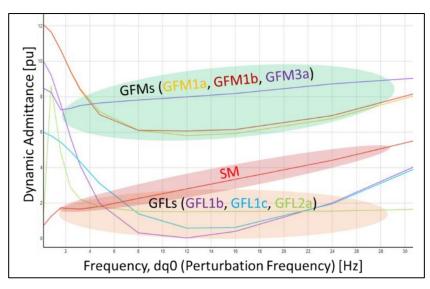
			Table 2.1: Com	parison of SCR N	dethods		
M	etric	Simple calculation using short circuit program		Provides common metric across a larger group of VER	Accounts for weak electrical coupling between plants within larger group		Able to consider individual sub-plants within larger group
SCR	Short Circuit Ratio	**	X	X	X	X	X
CSCR	Composite SCR	*	**	**	X	X	X
WSCR-MW	Weighted SCR using MW	*	**	**	*	X	X
WSCR-MVA	Weighted SCR using MVA	*	**	**	*	**	X
SCRIF	Multi-Infeed SCR	X	**	X	**	**	**

IPSCR

• Inverter Penetration SCR (IPSCR) [1]

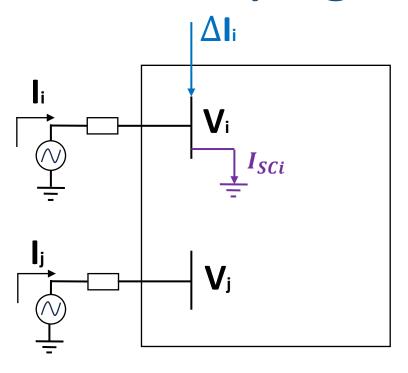
$$IPSCR = \frac{SCMVA_{Case\ B}}{SCMVA_{Case\ C}}$$

- Evaluates how much system strength comes from IBRs
 - Case B = case with all IBRs turned off
 - Case C = case with all conventional generation turned off and IBR Xsource tuned until it contributes 1 p.u. SCMVA


[1] L. Unruh and A. Isaacs (2021), 'Description of Inverter Penetration (IPSCR) Metric for Quantifying System Strength in Large Networks'

Generation Resource Characterization

- Industry has been exploring how to characterize
 GFM technology using impedance scans
- Entities are suggesting or requiring impedance scans for GFM technology
- Provides perspective on how technology will behave
- GFM technology routinely shows superior behaviour when compared to GFL and SM
- How do we tie resource characterization into our metric? We make it impedance based


Source: M. Richwine et al., Power System Stability Analysis & Planning Using Impedance-Based Methods, 2023

Modifying SCRIF

$$\begin{bmatrix} \Delta V_i \\ \Delta V_j \end{bmatrix} = \begin{bmatrix} Z_{ii} & Z_{ij} \\ Z_{ji} & Z_{jj} \end{bmatrix} \begin{bmatrix} \Delta I_i \\ \Delta I_j \end{bmatrix}$$

Calculate interaction factor:

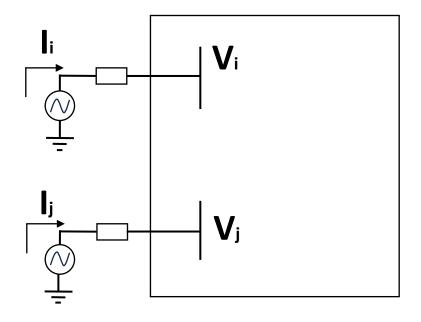
$$\begin{bmatrix} \Delta V_i \\ \Delta V_j \end{bmatrix} = \begin{bmatrix} Z_{ii} & Z_{ij} \\ Z_{ji} & Z_{jj} \end{bmatrix} \begin{bmatrix} \Delta I_i \\ 0 \end{bmatrix}$$

$$\Delta V_i = Z_{ii} \Delta I_i$$

$$\Delta V_j = Z_{ji} \Delta I_i$$

$$\Delta V_i = \frac{Z_{ji}}{Z_{ii}}$$

Calculate SCMVA:


$$\begin{bmatrix} \Delta V_i \\ \Delta V_j \end{bmatrix} = \begin{bmatrix} Z_{ii} & Z_{ij} \\ Z_{ji} & Z_{jj} \end{bmatrix} \begin{bmatrix} I_{SCi} \\ 0 \end{bmatrix}$$

$$\Delta V_i = Z_{ii} I_{SCi} \longrightarrow I_{SCi} = \frac{\Delta V_i}{Z_{ii}} \longrightarrow SCMVA_i = \frac{\Delta V_i^2}{Z_{ii}}$$

$$SCMVA_{i} = \frac{\Delta V_{i}^{2}}{Z_{ii}}$$

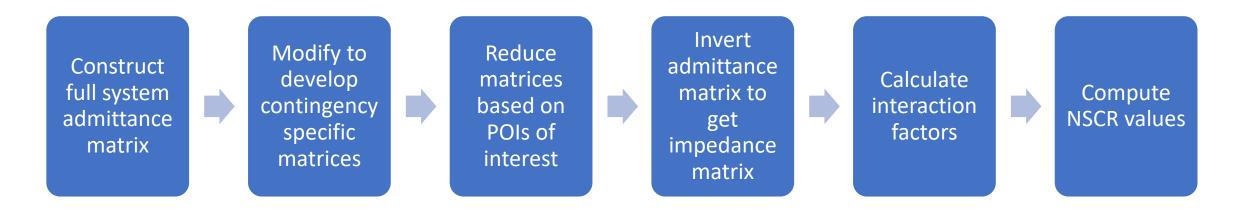
Modifying SCRIF

Developing Impedance-Based SCR Metric:

$$SCRIF = \frac{SCMVA_i}{P_i + \sum_{j=1, j \neq i}^{n} (P_j * IF_{ji})}$$

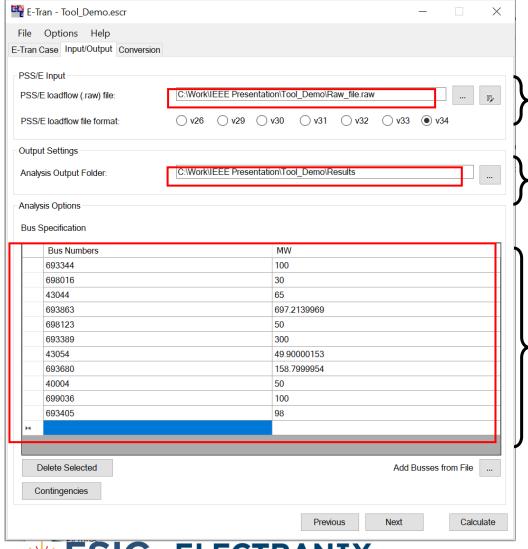
$$IF_{ji} = \frac{\Delta V_j}{\Delta V_i} = \frac{Z_{ji}}{Z_{ii}}$$

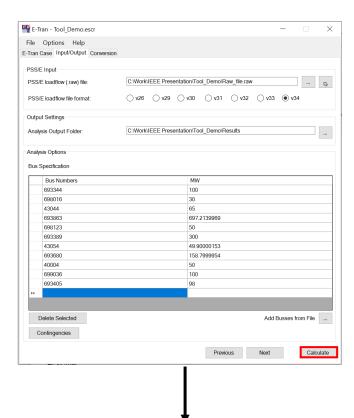
$$SCMVA_i = \frac{\Delta V_i^2}{Z_{ii}}$$


$$SCRIF = \frac{\frac{\Delta V_i^2}{Z_{ii}}}{\sum_{j=1}^{n} \left(P_j * \frac{Z_{ji}}{Z_{ii}}\right)}$$

$$NSCR = \frac{\Delta V_i^2}{\sum_{j=1}^n (P_j * Z_{ji})}$$

Expanding to entire system


The NSCR calculation can readily be expanded to large systems

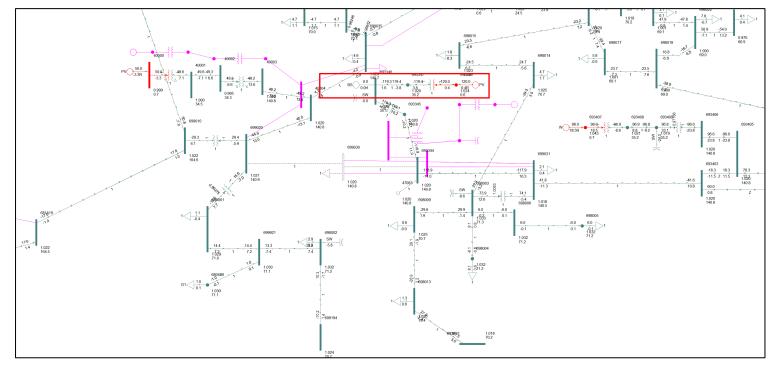

Building a tool...

Folder to output results to

POI buses of interest and corresponding MW injections

Raw file with correct Zsource

NSCR.out - Notepad


File Edit Format View Help

Contingency,NSCR1,NSCR2,NSCR3,NSCR4,NSCR5,NSCR6,NSCR7,NSCR8,NSCR9,NSCR10,NSCR11 1,2.19896,3.24457,13.6542,4.63208,4.93447,3.25918,5.76742,3.69095,5.76814,4.48435,2.24

Calibrating the tool

 We can use known system instabilities to set "bad" NSCR numbers

- PV plant was found to have:
 - Stability @ 100 MW
 - Marginal stability @ 120 MW
 - Instability @ 140 MW

Setting unstable NSCR values

Contingency, NSCR1, NSCR2, NSCR3, NSCR4, NSCR5, NSCR6, NSCR7, NSCR8, NSCR9, NSCR10, NSCR11 1,2.19896,3.24457,13.6542,4.63208,4.93447,3.25918,5.76742,3.69095,5.76814,4.48435,2.24

100 MW

Contingency, NSCR1, NSCR2, NSCR3, NSCR4, NSCR5, NSCR6, NSCR7, NSCR8, NSCR9, NSCR10, NSCR11
1,2.02501,3.17621,13.5431,4.60871,4.90736,3.23487,5.71591,3.66555,5.73015,4.44036,2.10722

120 MW

Contingency, NSCR1, NSCR2, NSCR3, NSCR4, NSCR5, NSCR6, NSCR7, NSCR8, NSCR9, NSCR10, NSCR11
1,1.87673,3.11084,13.4345,4.58567,4.88065,3.21101,5.66569,3.64057,5.69279,4.39756,1.9895

140 MW

Plant Dispatch	EMT Result	NSCR
100 MW	stable	2.1989
120 MW	marginally stable	2.0250
140 MW	unstable	1.8767

SCR-based metrics

- Key Takeaways
 - While lower SCR typically increases the likelihood of potential issues with inverter-based resources, these methods should be used as a screening tool for simple "radial" systems only.
 - Weak grid issues are system- and equipment-specific and it is difficult to define a "minimum system strength" criteria that can be applied uniformly.
 - What is "weak" for one manufacturer may not be a problem for another. What was "weak" for one manufacturer two years ago may no longer be difficult to achieve. The addition of a new piece of equipment may (through poor controls, for example) suddenly destabilize otherwise very well controlled existing equipment.

Appropriate use of SCR-based metrics

- Use metrics to gain a high-level understanding of relative impact of the interconnecting plant
- If there is any concern, involve planners, developers, and manufacturers to identify potential risks
- Use that understanding, combined with specific knowledge of the equipment and transmission system, decide whether further study is required.
- Note: it is very difficult to use SCR to set planning guidelines and thresholds

Mitigation Alternatives

- If a small SCR suggests there may be problems, mitigation is directly suggested by the formula...
- How do we fix a weak system problem?

$$SCR_{POI} = \frac{SCMVA_{POI}}{MW_{VER}}$$

Mitigation alternatives

- SMALLER GENERATORS!
- Selective curtailment or RAS
- More transmission
- Larger transformers
- Series capacitors (careful)
- Control tuning
- Synchronous Condensers
- FACTS (SVC or STATCOM?)
- GFM Batteries!!

